qr_op.h 4.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135
// Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#pragma once

#include <Eigen/Dense>
#include <cstdarg>
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/framework/operator.h"
#include "paddle/fluid/operators/math/complex_functors.h"
#include "paddle/fluid/platform/for_range.h"

namespace paddle {
namespace operators {
using Tensor = framework::Tensor;
using DDim = framework::DDim;

static inline std::tuple<bool, bool> _parse_qr_mode(std::string mode) {
  bool compute_q;
  bool reduced;
  if (mode == "reduced") {
    compute_q = true;
    reduced = true;
  } else if (mode == "complete") {
    compute_q = true;
    reduced = false;
  } else if (mode == "r") {
    compute_q = false;
    reduced = true;
  } else {
    PADDLE_THROW(platform::errors::InvalidArgument(
        "QR received unrecognized mode '%s'"
        " but expected one of 'reduced' (default), 'r', or 'complete'",
        mode));
  }
  return std::make_tuple(compute_q, reduced);
}

template <typename T>
class QrCPUKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& context) const override {
    bool compute_q;
    bool reduced_mode;
    const Tensor& x = *context.Input<Tensor>("X");
    Tensor& q = *context.Output<Tensor>("Q");
    Tensor& r = *context.Output<Tensor>("R");
    std::string mode = context.Attr<std::string>("mode");
    std::tie(compute_q, reduced_mode) = _parse_qr_mode(mode);

    auto numel = x.numel();
    PADDLE_ENFORCE_GT(numel, 0, platform::errors::PreconditionNotMet(
                                    "The input of QR is empty."));
    auto x_dims = x.dims();
    int x_rank = x_dims.size();
    int m = x_dims[x_rank - 2];
    int n = x_dims[x_rank - 1];
    int min_mn = std::min(m, n);
    int k = reduced_mode ? min_mn : m;
    int batch_size = numel / (m * n);
    int x_stride = m * n;
    int q_stride = m * k;
    int r_stride = k * n;

    auto* x_data = x.data<math::Real<T>>();
    T* q_data = nullptr;
    if (compute_q) {
      q_data = q.mutable_data<math::Real<T>>(
          context.GetPlace(),
          size_t(batch_size * m * k * sizeof(math::Real<T>)));
    }
    auto* r_data = r.mutable_data<math::Real<T>>(
        context.GetPlace(), size_t(batch_size * k * n * sizeof(math::Real<T>)));

    // Implement QR by calling Eigen
    for (int i = 0; i < batch_size; ++i) {
      const T* x_matrix_ptr = x_data + i * x_stride;
      T* r_matrix_ptr = r_data + i * r_stride;
      using EigenDynamicMatrix =
          Eigen::Matrix<T, Eigen::Dynamic, Eigen::Dynamic, Eigen::RowMajor>;
      auto x_matrix = Eigen::Map<const EigenDynamicMatrix>(x_matrix_ptr, m, n);
      Eigen::HouseholderQR<EigenDynamicMatrix> qr(x_matrix);
      if (reduced_mode) {
        auto qr_top_matrix = qr.matrixQR().block(0, 0, min_mn, n);
        auto r_matrix_view =
            qr_top_matrix.template triangularView<Eigen::Upper>();
        auto r_matrix = EigenDynamicMatrix(r_matrix_view);
        memcpy(r_matrix_ptr, r_matrix.data(), r_matrix.size() * sizeof(T));
      } else {
        auto r_matrix_view =
            qr.matrixQR().template triangularView<Eigen::Upper>();
        auto r_matrix = EigenDynamicMatrix(r_matrix_view);
        memcpy(r_matrix_ptr, r_matrix.data(), r_matrix.size() * sizeof(T));
      }

      if (compute_q) {
        T* q_matrix_ptr = q_data + i * q_stride;
        if (reduced_mode) {
          auto q_matrix =
              qr.householderQ() * EigenDynamicMatrix::Identity(m, min_mn);
          q_matrix.transposeInPlace();
          memcpy(q_matrix_ptr, q_matrix.data(), q_matrix.size() * sizeof(T));
        } else {
          auto q_matrix =
              qr.householderQ() * EigenDynamicMatrix::Identity(m, m);
          q_matrix.transposeInPlace();
          memcpy(q_matrix_ptr, q_matrix.data(), q_matrix.size() * sizeof(T));
        }
      }
    }
  }
};

template <typename DeviceContext, typename T>
class QrGradKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const {
    PADDLE_THROW(platform::errors::InvalidArgument(
        "QR doesn't have the backward kernel now and will be supported soon."));
  }
};

}  // namespace operators
}  // namespace paddle