sequence_expand_op.h 7.4 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
W
wanghaoshuang 已提交
2

L
Luo Tao 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
W
wanghaoshuang 已提交
6

L
Luo Tao 已提交
7
    http://www.apache.org/licenses/LICENSE-2.0
W
wanghaoshuang 已提交
8

L
Luo Tao 已提交
9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
W
wanghaoshuang 已提交
14 15

#pragma once
D
dzhwinter 已提交
16
#include <numeric>  // std::iota
W
wanghaoshuang 已提交
17

Y
Yi Wang 已提交
18 19
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/memory/memcpy.h"
D
dzhwinter 已提交
20
#include "paddle/fluid/operators/math/math_function.h"
W
wanghaoshuang 已提交
21 22 23 24 25

namespace paddle {
namespace operators {

using LoDTensor = framework::LoDTensor;
D
dzhwinter 已提交
26 27 28
template <typename T, int MajorType = Eigen::RowMajor,
          typename IndexType = Eigen::DenseIndex>
using EigenMatrix = framework::EigenMatrix<T, MajorType, IndexType>;
W
wanghaoshuang 已提交
29

D
dzhwinter 已提交
30 31
template <typename DeviceContext, typename T>
struct SequenceExpandFunctor {
D
dzhwinter 已提交
32 33 34 35 36
  void operator()(
      const DeviceContext& ctx, const LoDTensor& x,
      const framework::Vector<size_t>& x_lod,   /*expand source lod*/
      const framework::Vector<size_t>& ref_lod, /*expand referenced lod*/
      LoDTensor* out);
D
dzhwinter 已提交
37 38
};

D
dzhwinter 已提交
39 40
template <typename DeviceContext, typename T>
struct SequenceExpandGradFunctor {
D
dzhwinter 已提交
41 42 43 44 45
  void operator()(
      const DeviceContext& ctx, const LoDTensor& dout,
      const framework::Vector<size_t>& x_lod,   /*expand source lod*/
      const framework::Vector<size_t>& ref_lod, /*expand referenced lod*/
      LoDTensor* dx);
D
dzhwinter 已提交
46
};
D
dzhwinter 已提交
47 48

template <typename T>
D
dzhwinter 已提交
49
struct SequenceExpandFunctor<platform::CPUDeviceContext, T> {
D
dzhwinter 已提交
50 51 52 53 54
  void operator()(
      const platform::CPUDeviceContext& context, const LoDTensor& x,
      const framework::Vector<size_t>& x_lod,   /*expand source lod*/
      const framework::Vector<size_t>& ref_lod, /*expand referenced lod*/
      LoDTensor* out) {
D
dzhwinter 已提交
55 56
    int out_offset = 0;
    auto& eigen_place = *context.eigen_device();
D
dzhwinter 已提交
57 58
    for (size_t i = 1; i < ref_lod.size(); ++i) {
      int repeat_num = ref_lod[i] - ref_lod[i - 1];
D
dzhwinter 已提交
59 60 61 62
      int x_start = x_lod[i - 1];
      int x_end = x_lod[i];
      int x_seq_len = x_end - x_start;
      if (repeat_num > 0) {
D
dzhwinter 已提交
63
        auto x_sub_tensor = x.Slice(x_start, x_end);
D
dzhwinter 已提交
64 65
        x_sub_tensor.Resize({1, x_sub_tensor.numel()});
        int out_start = out_offset;
D
dzhwinter 已提交
66 67
        if (out->lod().size() == 1) {
          out_start = out->lod()[0][out_offset];
D
dzhwinter 已提交
68 69 70 71 72 73 74 75
        }
        auto out_sub_tensor =
            out->Slice(out_start, out_start + x_seq_len * repeat_num);
        out_sub_tensor.Resize({repeat_num, x_sub_tensor.dims()[1]});
        EigenMatrix<T>::From(out_sub_tensor).device(eigen_place) =
            EigenMatrix<T>::From(x_sub_tensor)
                .broadcast(Eigen::array<int, 2>({{repeat_num, 1}}));
      }
D
dzhwinter 已提交
76
      out_offset += repeat_num;
D
dzhwinter 已提交
77
    }
D
dzhwinter 已提交
78
  }
D
dzhwinter 已提交
79
};
D
dzhwinter 已提交
80

Q
QI JUN 已提交
81
template <typename DeviceContext, typename T>
W
wanghaoshuang 已提交
82
class SequenceExpandKernel : public framework::OpKernel<T> {
W
wanghaoshuang 已提交
83 84 85
 public:
  void Compute(const framework::ExecutionContext& context) const override {
    auto* x = context.Input<LoDTensor>("X");
W
wanghaoshuang 已提交
86
    auto* y = context.Input<LoDTensor>("Y");
D
dzhwinter 已提交
87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102
    auto* out = context.Output<LoDTensor>("Out");

    int ref_level = context.Attr<int>("ref_level");
    auto& x_lod = x->lod();
    auto& y_lod = y->lod();

    if (ref_level == -1) ref_level = y_lod.size() - 1;

    out->mutable_data<T>(context.GetPlace());

    if (y_lod[ref_level].size() <= 1) {
      framework::TensorCopy(*x, context.GetPlace(), out);
      return;
    }

    // x lod level is at most 1.
D
dzhwinter 已提交
103 104 105
    framework::Vector<size_t> out_lod;
    if (x_lod.size() == 1) {
      out_lod.push_back(0);
D
dzhwinter 已提交
106 107 108 109 110 111 112
      int out_offset = 0;
      for (size_t i = 1; i < y_lod[ref_level].size(); ++i) {
        int repeat_num = y_lod[ref_level][i] - y_lod[ref_level][i - 1];
        int x_start = x_lod[0][i - 1];
        int x_end = x_lod[0][i];
        int x_seq_len = x_end - x_start;
        for (int j = 0; j < repeat_num; ++j) {
D
dzhwinter 已提交
113
          out_lod.push_back(out_lod.back() + x_seq_len);
D
dzhwinter 已提交
114 115 116
          out_offset++;
        }
      }
D
dzhwinter 已提交
117 118 119 120 121 122 123 124 125 126 127
      // write lod to out if x has lod
      auto& ref_lod = *out->mutable_lod();
      ref_lod[0] = out_lod;
    }
    framework::Vector<size_t> ref_x_lod;
    if (x->lod().size() == 1) {
      ref_x_lod = x->lod()[0];
    } else {
      // x_lod doesn't has lod, use fake x lod, level = 0
      ref_x_lod.resize(x->dims()[0] + 1);
      std::iota(ref_x_lod.begin(), ref_x_lod.end(), 0);
D
dzhwinter 已提交
128
    }
D
dzhwinter 已提交
129
    SequenceExpandFunctor<DeviceContext, T> functor;
D
dzhwinter 已提交
130 131
    functor(context.template device_context<DeviceContext>(), *x, ref_x_lod,
            y_lod[ref_level], out);
W
wanghaoshuang 已提交
132 133 134
  }
};

135 136 137 138 139 140 141 142 143 144 145 146
/*
 *Given Grad(Out)
 *
 *    Grad(Out).lod = [[0,                            2],
 *                     [0,              3,            6]]
 *    Grad(Out).data = [0.1, 0.2, 0.3, 0.4, 0.5, 0.6]
 * Then
 *    Grad(X).data = [(0.1 + 0.2 + 0.3), (0.4 + 0.5 + 0.6)]
 *                 = [0.6, 1.5]
 *    Grad(X).lod = Input(X).lod
 *
 * */
D
dzhwinter 已提交
147 148
template <typename T>
struct SequenceExpandGradFunctor<platform::CPUDeviceContext, T> {
D
dzhwinter 已提交
149 150 151 152 153 154 155 156 157 158 159
  void operator()(
      const platform::CPUDeviceContext& context, const LoDTensor& dout,
      const framework::Vector<size_t>& x_lod,   /*expand source lod*/
      const framework::Vector<size_t>& ref_lod, /*expand referenced lod*/
      LoDTensor* dx) {
    math::SetConstant<platform::CPUDeviceContext, T> set_zero;
    set_zero(context, dx, static_cast<T>(0));

    int dout_offset = 0;
    for (size_t i = 1; i < ref_lod.size(); ++i) {
      int repeat_num = ref_lod[i] - ref_lod[i - 1];
D
dzhwinter 已提交
160
      if (repeat_num > 0) {
D
dzhwinter 已提交
161 162
        int x_start = x_lod[i - 1];
        int x_end = x_lod[i];
D
dzhwinter 已提交
163
        int x_seq_len = x_end - x_start;
D
dzhwinter 已提交
164 165 166 167 168 169 170 171
        auto dx_sub = dx->Slice(x_start, x_end);
        dx_sub.Resize(flatten_to_1d(dx_sub.dims()));
        int dout_end = dout_offset + repeat_num * x_seq_len;
        auto dout_sub = dout.Slice(dout_offset, dout_end);
        dout_sub.Resize({repeat_num, dx_sub.dims()[0]});
        math::ColwiseSum<platform::CPUDeviceContext, T> col_sum;
        col_sum(context, dout_sub, &dx_sub);
        dout_offset += repeat_num * x_seq_len;
D
dzhwinter 已提交
172
      }
W
wanghaoshuang 已提交
173
    }
W
wanghaoshuang 已提交
174 175 176
  }
};

D
dzhwinter 已提交
177 178 179 180
template <typename DeviceContext, typename T>
class SequenceExpandGradKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& context) const override {
D
dzhwinter 已提交
181
    auto* g_out = context.Input<LoDTensor>(framework::GradVarName("Out"));
D
dzhwinter 已提交
182
    auto* x = context.Input<LoDTensor>("X");
D
dzhwinter 已提交
183 184 185 186 187 188 189 190 191 192 193 194 195 196
    auto* y = context.Input<LoDTensor>("Y");
    auto* g_x = context.Output<LoDTensor>(framework::GradVarName("X"));
    int ref_level = context.Attr<int>("ref_level");

    g_x->mutable_data<T>(context.GetPlace());
    g_x->set_lod(x->lod());

    auto& y_lod = y->lod();
    if (ref_level == -1) ref_level = y_lod.size() - 1;
    // just copy the gradient
    if (y_lod[ref_level].size() <= 1) {
      framework::TensorCopy(*g_out, context.GetPlace(), g_x);
      return;
    }
D
dzhwinter 已提交
197

D
dzhwinter 已提交
198 199 200 201 202 203 204 205 206
    framework::Vector<size_t> ref_x_lod;
    framework::Vector<size_t> ref_lod = y_lod[ref_level];
    if (x->lod().size() == 1) {
      ref_x_lod = x->lod()[0];
    } else {
      // x_lod doesn't has lod, use fake x lod, level = 0
      ref_x_lod.resize(x->dims()[0] + 1);
      std::iota(ref_x_lod.begin(), ref_x_lod.end(), 0);
    }
D
dzhwinter 已提交
207
    SequenceExpandGradFunctor<DeviceContext, T> functor;
D
dzhwinter 已提交
208 209
    functor(context.template device_context<DeviceContext>(), *g_out, ref_x_lod,
            ref_lod, g_x);
D
dzhwinter 已提交
210 211 212
  }
};

W
wanghaoshuang 已提交
213 214
}  // namespace operators
}  // namespace paddle