sequence_expand_op.h 6.7 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
W
wanghaoshuang 已提交
2

L
Luo Tao 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
W
wanghaoshuang 已提交
6

L
Luo Tao 已提交
7
    http://www.apache.org/licenses/LICENSE-2.0
W
wanghaoshuang 已提交
8

L
Luo Tao 已提交
9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
W
wanghaoshuang 已提交
14 15

#pragma once
D
dzhwinter 已提交
16
#include <numeric>  // std::itoa
W
wanghaoshuang 已提交
17

Y
Yi Wang 已提交
18 19
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/memory/memcpy.h"
D
dzhwinter 已提交
20
#include "paddle/fluid/operators/math/math_function.h"
W
wanghaoshuang 已提交
21 22 23 24 25

namespace paddle {
namespace operators {

using LoDTensor = framework::LoDTensor;
D
dzhwinter 已提交
26 27 28
template <typename T, int MajorType = Eigen::RowMajor,
          typename IndexType = Eigen::DenseIndex>
using EigenMatrix = framework::EigenMatrix<T, MajorType, IndexType>;
W
wanghaoshuang 已提交
29

D
dzhwinter 已提交
30 31 32 33 34
template <typename DeviceContext, typename T>
struct SequenceExpandFunctor {
  void operator()(const DeviceContext& ctx, const LoDTensor& x, LoDTensor* out);
};

D
dzhwinter 已提交
35 36 37 38 39
template <typename DeviceContext, typename T>
struct SequenceExpandGradFunctor {
  void operator()(const DeviceContext& ctx, const LoDTensor& x,
                  const LoDTensor& out, const LoDTensor& dout, LoDTensor* dx);
};
D
dzhwinter 已提交
40 41

template <typename T>
D
dzhwinter 已提交
42 43 44
struct SequenceExpandFunctor<platform::CPUDeviceContext, T> {
  void operator()(const platform::CPUDeviceContext& context, const LoDTensor& x,
                  LoDTensor* out) {
D
dzhwinter 已提交
45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73
    auto& out_lod = out->lod()[0];
    framework::Vector<size_t> x_lod;
    if (x.lod() == 1) {
      x_lod = x.lod()[0];
    } else {
      x_lod.reserve(out_lod.size());
      std::itoa(x_lod.begin(), x_lod.end(), 0);  // fill 0 ~ out_lod.size()-1
    }
    int out_offset = 0;
    auto& eigen_place = *context.eigen_device();
    for (size_t i = 1; i < out_lod.size(); ++i) {
      int repeat_num = y_lod[ref_level][i] - y_lod[ref_level][i - 1];
      int x_start = x_lod[i - 1];
      int x_end = x_lod[i];
      int x_seq_len = x_end - x_start;
      if (repeat_num > 0) {
        auto x_sub_tensor = x->Slice(x_start, x_end);
        x_sub_tensor.Resize({1, x_sub_tensor.numel()});
        int out_start = out_offset;
        if (x_lod.size() == 1) {
          out_start = out_lod[0][out_offset];
        }
        auto out_sub_tensor =
            out->Slice(out_start, out_start + x_seq_len * repeat_num);
        out_sub_tensor.Resize({repeat_num, x_sub_tensor.dims()[1]});
        EigenMatrix<T>::From(out_sub_tensor).device(eigen_place) =
            EigenMatrix<T>::From(x_sub_tensor)
                .broadcast(Eigen::array<int, 2>({{repeat_num, 1}}));
      }
D
dzhwinter 已提交
74
    }
D
dzhwinter 已提交
75
  }
D
dzhwinter 已提交
76
};
D
dzhwinter 已提交
77

Q
QI JUN 已提交
78
template <typename DeviceContext, typename T>
W
wanghaoshuang 已提交
79
class SequenceExpandKernel : public framework::OpKernel<T> {
W
wanghaoshuang 已提交
80 81 82
 public:
  void Compute(const framework::ExecutionContext& context) const override {
    auto* x = context.Input<LoDTensor>("X");
W
wanghaoshuang 已提交
83
    auto* y = context.Input<LoDTensor>("Y");
D
dzhwinter 已提交
84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118
    auto* out = context.Output<LoDTensor>("Out");

    int ref_level = context.Attr<int>("ref_level");
    auto& x_lod = x->lod();
    auto& y_lod = y->lod();

    if (ref_level == -1) ref_level = y_lod.size() - 1;

    out->mutable_data<T>(context.GetPlace());

    if (y_lod[ref_level].size() <= 1) {
      framework::TensorCopy(*x, context.GetPlace(), out);
      return;
    }

    auto& out_lod = *out->mutable_lod();
    // x lod level is at most 1.
    if (x_lod.size() == 0) {
      out_lod = y_lod[ref_level];
    } else if (x_lod.size() == 1) {
      out_lod.resize(1);
      out_lod[0] = {0};
      int out_offset = 0;
      for (size_t i = 1; i < y_lod[ref_level].size(); ++i) {
        int repeat_num = y_lod[ref_level][i] - y_lod[ref_level][i - 1];
        int x_start = x_lod[0][i - 1];
        int x_end = x_lod[0][i];
        int x_seq_len = x_end - x_start;
        for (int j = 0; j < repeat_num; ++j) {
          out_lod[0].push_back(out_lod[0].back() + x_seq_len);
          out_offset++;
        }
      }
    }

D
dzhwinter 已提交
119 120
    SequenceExpandFunctor<DeviceContext, T> functor;
    functor(context.template device_context<DeviceContext>(), *x, out);
W
wanghaoshuang 已提交
121 122 123
  }
};

124 125 126 127 128 129 130 131 132 133 134 135
/*
 *Given Grad(Out)
 *
 *    Grad(Out).lod = [[0,                            2],
 *                     [0,              3,            6]]
 *    Grad(Out).data = [0.1, 0.2, 0.3, 0.4, 0.5, 0.6]
 * Then
 *    Grad(X).data = [(0.1 + 0.2 + 0.3), (0.4 + 0.5 + 0.6)]
 *                 = [0.6, 1.5]
 *    Grad(X).lod = Input(X).lod
 *
 * */
D
dzhwinter 已提交
136 137
template <typename T>
struct SequenceExpandGradFunctor<platform::CPUDeviceContext, T> {
D
dzhwinter 已提交
138
  void operator()(const platform::CPUDeviceContext& context, const LoDTensor& x,
D
dzhwinter 已提交
139
                  const LoDTensor& out, const LoDTensor& dout, LoDTensor* dx) {
D
dzhwinter 已提交
140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164
    auto& dev_ctx = context.template device_context<DeviceContext>();

    math::SetConstant<DeviceContext, T> set_zero;
    set_zero(dev_ctx, g_x, static_cast<T>(0));

    int g_out_offset = 0;
    for (size_t i = 1; i < y_lod[ref_level].size(); ++i) {
      int repeat_num = y_lod[ref_level][i] - y_lod[ref_level][i - 1];
      if (repeat_num > 0) {
        int x_start = i - 1;
        int x_end = i;
        if (x_lod.size() == 1) {
          x_start = x_lod[0][i - 1];
          x_end = x_lod[0][i];
        }
        int x_seq_len = x_end - x_start;
        auto g_x_sub = g_x->Slice(x_start, x_end);
        g_x_sub.Resize(flatten_to_1d(g_x_sub.dims()));
        int g_out_end = g_out_offset + repeat_num * x_seq_len;
        auto g_out_sub = g_out->Slice(g_out_offset, g_out_end);
        g_out_sub.Resize({repeat_num, g_x_sub.dims()[0]});
        math::ColwiseSum<DeviceContext, T> col_sum;
        col_sum(dev_ctx, g_out_sub, &g_x_sub);
        g_out_offset += repeat_num * x_seq_len;
      }
W
wanghaoshuang 已提交
165
    }
W
wanghaoshuang 已提交
166 167 168
  }
};

D
dzhwinter 已提交
169 170 171 172
template <typename DeviceContext, typename T>
class SequenceExpandGradKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& context) const override {
D
dzhwinter 已提交
173
    auto* g_out = context.Input<LoDTensor>(framework::GradVarName("Out"));
D
dzhwinter 已提交
174
    auto* x = context.Input<LoDTensor>("X");
D
dzhwinter 已提交
175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191
    auto* y = context.Input<LoDTensor>("Y");
    auto* g_x = context.Output<LoDTensor>(framework::GradVarName("X"));
    int ref_level = context.Attr<int>("ref_level");

    g_x->mutable_data<T>(context.GetPlace());
    g_x->set_lod(x->lod());

    auto& x_lod = x->lod();
    auto& y_lod = y->lod();

    if (ref_level == -1) ref_level = y_lod.size() - 1;

    // just copy the gradient
    if (y_lod[ref_level].size() <= 1) {
      framework::TensorCopy(*g_out, context.GetPlace(), g_x);
      return;
    }
D
dzhwinter 已提交
192 193

    SequenceExpandGradFunctor<DeviceContext, T> functor;
D
dzhwinter 已提交
194 195
    functor(context.template device_context<DeviceContext>(), *x, *y, *g_out,
            g_x);
D
dzhwinter 已提交
196 197 198
  }
};

W
wanghaoshuang 已提交
199 200
}  // namespace operators
}  // namespace paddle