test_py_func_op.py 6.0 KB
Newer Older
S
sneaxiy 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

S
sneaxiy 已提交
15
import os
S
sneaxiy 已提交
16
import paddle.fluid as fluid
17
from paddle.fluid import compiler
S
sneaxiy 已提交
18 19 20 21 22
import paddle
import unittest
import six
import numpy as np

S
sneaxiy 已提交
23 24 25 26 27
dev_cnt = 2
if fluid.core.is_compiled_with_cuda():
    dev_cnt = fluid.core.get_cuda_device_count()
os.environ['CPU_NUM'] = str(dev_cnt)

S
sneaxiy 已提交
28

S
sneaxiy 已提交
29
def dummy_func_with_no_input():
S
sneaxiy 已提交
30
    return np.array([0], dtype='float32')
S
sneaxiy 已提交
31 32 33 34 35 36


def dummy_func_with_no_output(x):
    pass


S
sneaxiy 已提交
37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76
def tanh(x):
    return np.tanh(x)


def tanh_grad(y, dy):
    return np.array(dy) * (1 - np.square(np.array(y)))


def cross_entropy(logits, labels):
    logits = np.array(logits)
    labels = np.array(labels)
    M = logits.shape[0]
    N = logits.shape[1]
    ret = np.ndarray([M, 1]).astype(logits.dtype)
    for idx in six.moves.range(M):
        ret[idx][0] = -np.log(logits[idx][labels[idx][0]])
    return ret


def cross_entropy_grad(logits, labels, bwd_dout):
    logits = np.array(logits)
    labels = np.array(labels)
    bwd_dout = np.array(bwd_dout)
    M = logits.shape[0]
    N = logits.shape[1]
    dlogits = np.zeros([M, N]).astype(logits.dtype)
    for idx in six.moves.range(M):
        dlogits[idx][labels[idx][0]] = -bwd_dout[idx] / logits[idx][labels[idx][
            0]]
    return dlogits, None


def simple_fc_net(img, label, use_py_func_op):
    hidden = img
    for idx in range(4):
        hidden = fluid.layers.fc(
            hidden,
            size=200,
            bias_attr=fluid.ParamAttr(
                initializer=fluid.initializer.Constant(value=1.0)))
S
sneaxiy 已提交
77
        if not use_py_func_op:
S
sneaxiy 已提交
78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97
            hidden = fluid.layers.tanh(hidden)
        else:
            new_hidden = fluid.default_main_program().current_block(
            ).create_var(
                name='hidden_{}'.format(idx),
                dtype='float32',
                shape=hidden.shape)
            hidden = fluid.layers.py_func(
                func=tanh,
                x=hidden,
                out=new_hidden,
                backward_func=tanh_grad,
                skip_vars_in_backward_input=hidden)

    prediction = fluid.layers.fc(hidden, size=10, act='softmax')
    if not use_py_func_op:
        loss = fluid.layers.cross_entropy(input=prediction, label=label)
    else:
        loss = fluid.default_main_program().current_block().create_var(
            name='loss', dtype='float32', shape=[-1, 1])
S
sneaxiy 已提交
98
        loss = fluid.layers.py_func(
S
sneaxiy 已提交
99 100 101 102 103
            func=cross_entropy,
            x=[prediction, label],
            out=loss,
            backward_func=cross_entropy_grad,
            skip_vars_in_backward_input=loss)
S
sneaxiy 已提交
104

S
sneaxiy 已提交
105 106 107 108
        dummy_var = fluid.default_main_program().current_block().create_var(
            name='test_tmp_var', dtype='float32', shape=[1])
        fluid.layers.py_func(
            func=dummy_func_with_no_input, x=None, out=dummy_var)
S
sneaxiy 已提交
109
        loss += dummy_var
S
sneaxiy 已提交
110 111
        fluid.layers.py_func(func=dummy_func_with_no_output, x=loss, out=None)

S
sneaxiy 已提交
112 113 114 115 116
    loss = fluid.layers.mean(loss)
    return loss


def reader():
S
sneaxiy 已提交
117
    for _ in six.moves.range(dev_cnt * 100):
S
sneaxiy 已提交
118 119 120 121
        yield np.random.random([784]), np.random.random_integers(
            size=[1], low=0, high=9)


S
sneaxiy 已提交
122
def test_main(use_cuda, use_py_func_op, use_parallel_executor):
S
sneaxiy 已提交
123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143
    if use_cuda and not fluid.core.is_compiled_with_cuda():
        return None

    with fluid.program_guard(fluid.Program(), fluid.Program()):
        with fluid.scope_guard(fluid.core.Scope()):
            fluid.default_main_program().random_seed = 1
            fluid.default_startup_program().random_seed = 1
            np.random.seed(1)

            img = fluid.layers.data(name='image', shape=[784], dtype='float32')
            label = fluid.layers.data(name='label', shape=[1], dtype='int64')
            loss = simple_fc_net(img, label, use_py_func_op)
            optimizer = fluid.optimizer.SGD(learning_rate=1e-3)
            optimizer.minimize(loss)

            place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace()
            feeder = fluid.DataFeeder(feed_list=[img, label], place=place)
            r = paddle.batch(reader, batch_size=10)

            exe = fluid.Executor(place)
            exe.run(fluid.default_startup_program())
144 145

            train_cp = compiler.CompiledProgram(fluid.default_main_program())
S
sneaxiy 已提交
146
            if use_parallel_executor:
147
                train_cp = train_cp.with_data_parallel(loss_name=loss.name)
S
sneaxiy 已提交
148 149 150 151
                fetch_list = [loss.name]
            else:
                fetch_list = [loss]

S
sneaxiy 已提交
152 153 154
            ret = []
            for epoch_id in six.moves.range(2):
                for d in r():
155 156 157
                    L, = exe.run(train_cp,
                                 feed=feeder.feed(d),
                                 fetch_list=fetch_list)
S
sneaxiy 已提交
158
                    ret.append(L)
S
sneaxiy 已提交
159 160 161
            return np.array(ret)


S
sneaxiy 已提交
162 163 164 165
class TestPyFuncOpUseExecutor(unittest.TestCase):
    def setUp(self):
        self.use_parallel_executor = False

S
sneaxiy 已提交
166 167 168 169
    def test_loss_diff(self):
        losses = []
        for use_cuda in [True, False]:
            for use_py_func_op in [True, False]:
S
sneaxiy 已提交
170 171
                L = test_main(use_cuda, use_py_func_op,
                              self.use_parallel_executor)
S
sneaxiy 已提交
172 173 174 175 176 177 178 179
                if L is not None:
                    losses.append(L)

        for idx in six.moves.range(len(losses) - 1):
            max_diff = np.max(np.abs(losses[idx] - losses[0]))
            self.assertAlmostEqual(max_diff, 0, delta=1e-3)


S
sneaxiy 已提交
180
class TestPyFuncOpUseParallelExecutor(TestPyFuncOpUseExecutor):
S
sneaxiy 已提交
181 182 183 184
    def setUp(self):
        self.use_parallel_executor = True


S
sneaxiy 已提交
185 186
if __name__ == '__main__':
    unittest.main()