test_py_func_op.py 5.4 KB
Newer Older
S
sneaxiy 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

S
sneaxiy 已提交
15
import os
S
sneaxiy 已提交
16 17 18 19 20 21
import paddle.fluid as fluid
import paddle
import unittest
import six
import numpy as np

S
sneaxiy 已提交
22 23 24 25 26
dev_cnt = 2
if fluid.core.is_compiled_with_cuda():
    dev_cnt = fluid.core.get_cuda_device_count()
os.environ['CPU_NUM'] = str(dev_cnt)

S
sneaxiy 已提交
27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67

def tanh(x):
    return np.tanh(x)


def tanh_grad(y, dy):
    return np.array(dy) * (1 - np.square(np.array(y)))


def cross_entropy(logits, labels):
    logits = np.array(logits)
    labels = np.array(labels)
    M = logits.shape[0]
    N = logits.shape[1]
    ret = np.ndarray([M, 1]).astype(logits.dtype)
    for idx in six.moves.range(M):
        ret[idx][0] = -np.log(logits[idx][labels[idx][0]])
    return ret


def cross_entropy_grad(logits, labels, bwd_dout):
    logits = np.array(logits)
    labels = np.array(labels)
    bwd_dout = np.array(bwd_dout)
    M = logits.shape[0]
    N = logits.shape[1]
    dlogits = np.zeros([M, N]).astype(logits.dtype)
    for idx in six.moves.range(M):
        dlogits[idx][labels[idx][0]] = -bwd_dout[idx] / logits[idx][labels[idx][
            0]]
    return dlogits, None


def simple_fc_net(img, label, use_py_func_op):
    hidden = img
    for idx in range(4):
        hidden = fluid.layers.fc(
            hidden,
            size=200,
            bias_attr=fluid.ParamAttr(
                initializer=fluid.initializer.Constant(value=1.0)))
S
sneaxiy 已提交
68
        if not use_py_func_op:
S
sneaxiy 已提交
69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94
            hidden = fluid.layers.tanh(hidden)
        else:
            new_hidden = fluid.default_main_program().current_block(
            ).create_var(
                name='hidden_{}'.format(idx),
                dtype='float32',
                shape=hidden.shape)
            hidden = fluid.layers.py_func(
                func=tanh,
                x=hidden,
                out=new_hidden,
                backward_func=tanh_grad,
                skip_vars_in_backward_input=hidden)

    prediction = fluid.layers.fc(hidden, size=10, act='softmax')
    if not use_py_func_op:
        loss = fluid.layers.cross_entropy(input=prediction, label=label)
    else:
        loss = fluid.default_main_program().current_block().create_var(
            name='loss', dtype='float32', shape=[-1, 1])
        fluid.layers.py_func(
            func=cross_entropy,
            x=[prediction, label],
            out=loss,
            backward_func=cross_entropy_grad,
            skip_vars_in_backward_input=loss)
S
sneaxiy 已提交
95

S
sneaxiy 已提交
96 97 98 99 100
    loss = fluid.layers.mean(loss)
    return loss


def reader():
S
sneaxiy 已提交
101
    for _ in six.moves.range(dev_cnt * 100):
S
sneaxiy 已提交
102 103 104 105
        yield np.random.random([784]), np.random.random_integers(
            size=[1], low=0, high=9)


S
sneaxiy 已提交
106
def test_main(use_cuda, use_py_func_op, use_parallel_executor):
S
sneaxiy 已提交
107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127
    if use_cuda and not fluid.core.is_compiled_with_cuda():
        return None

    with fluid.program_guard(fluid.Program(), fluid.Program()):
        with fluid.scope_guard(fluid.core.Scope()):
            fluid.default_main_program().random_seed = 1
            fluid.default_startup_program().random_seed = 1
            np.random.seed(1)

            img = fluid.layers.data(name='image', shape=[784], dtype='float32')
            label = fluid.layers.data(name='label', shape=[1], dtype='int64')
            loss = simple_fc_net(img, label, use_py_func_op)
            optimizer = fluid.optimizer.SGD(learning_rate=1e-3)
            optimizer.minimize(loss)

            place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace()
            feeder = fluid.DataFeeder(feed_list=[img, label], place=place)
            r = paddle.batch(reader, batch_size=10)

            exe = fluid.Executor(place)
            exe.run(fluid.default_startup_program())
S
sneaxiy 已提交
128 129 130 131 132 133 134
            if use_parallel_executor:
                exe = fluid.ParallelExecutor(
                    use_cuda=use_cuda, loss_name=loss.name)
                fetch_list = [loss.name]
            else:
                fetch_list = [loss]

S
sneaxiy 已提交
135 136 137
            ret = []
            for epoch_id in six.moves.range(2):
                for d in r():
S
sneaxiy 已提交
138 139
                    L, = exe.run(feed=feeder.feed(d), fetch_list=fetch_list)
                    ret.append(L)
S
sneaxiy 已提交
140 141 142 143

            return np.array(ret)


S
sneaxiy 已提交
144 145 146 147
class TestPyFuncOpUseExecutor(unittest.TestCase):
    def setUp(self):
        self.use_parallel_executor = False

S
sneaxiy 已提交
148 149 150 151
    def test_loss_diff(self):
        losses = []
        for use_cuda in [True, False]:
            for use_py_func_op in [True, False]:
S
sneaxiy 已提交
152 153
                L = test_main(use_cuda, use_py_func_op,
                              self.use_parallel_executor)
S
sneaxiy 已提交
154 155 156 157 158 159 160 161
                if L is not None:
                    losses.append(L)

        for idx in six.moves.range(len(losses) - 1):
            max_diff = np.max(np.abs(losses[idx] - losses[0]))
            self.assertAlmostEqual(max_diff, 0, delta=1e-3)


S
sneaxiy 已提交
162 163 164 165 166
class TestPyFuncOpUseParallelExecutor(unittest.TestCase):
    def setUp(self):
        self.use_parallel_executor = True


S
sneaxiy 已提交
167 168
if __name__ == '__main__':
    unittest.main()