elementwise_add_op.h 7.5 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
G
gongweibao 已提交
2

L
Luo Tao 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
G
gongweibao 已提交
6

L
Luo Tao 已提交
7
    http://www.apache.org/licenses/LICENSE-2.0
G
gongweibao 已提交
8

L
Luo Tao 已提交
9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
F
fengjiayi 已提交
14 15
#pragma once

W
Wu Yi 已提交
16
#include "paddle/fluid/operators/elementwise/elementwise_op.h"
17
#include "paddle/fluid/operators/elementwise/elementwise_op_function.cu.h"
W
Wu Yi 已提交
18
#include "paddle/fluid/operators/elementwise/elementwise_op_function.h"
19
#include "paddle/fluid/operators/math/blas.h"
W
wanghuancoder 已提交
20

G
gongweibao 已提交
21 22 23
namespace paddle {
namespace operators {

24
template <typename DeviceContext, typename T>
25 26 27 28
void DefaultElementwiseAddGrad(const framework::ExecutionContext &ctx,
                               const framework::Tensor *x,
                               const framework::Tensor *y,
                               framework::Tensor *z) {
29
  int axis = ctx.Attr<int>("axis");
30 31 32
  auto x_dims = x->dims();
  auto y_dims = y->dims();
  if (x_dims.size() >= y_dims.size()) {
33 34 35 36 37 38
    ElementwiseComputeEx<AddFunctor<T>, DeviceContext, T>(ctx, x, y, axis,
                                                          AddFunctor<T>(), z);
  } else {
    ElementwiseComputeEx<InverseAddFunctor<T>, DeviceContext, T>(
        ctx, x, y, axis, InverseAddFunctor<T>(), z);
  }
39 40
}

41 42 43 44 45 46
template <typename DeviceContext, typename T, class Enable = void>
struct SameDimsElemwiseAdd {
  void operator()(const framework::ExecutionContext &ctx,
                  const framework::Tensor *x, const framework::Tensor *y,
                  framework::Tensor *z);
};
47

Q
QI JUN 已提交
48
template <typename DeviceContext, typename T>
Y
Yu Yang 已提交
49
class ElementwiseAddKernel : public framework::OpKernel<T> {
G
gongweibao 已提交
50
 public:
C
chengduo 已提交
51 52 53 54
  void Compute(const framework::ExecutionContext &ctx) const override {
    auto *x = ctx.Input<framework::LoDTensor>("X");
    auto *y = ctx.Input<framework::LoDTensor>("Y");
    auto *z = ctx.Output<framework::LoDTensor>("Out");
C
chengduoZH 已提交
55
    z->mutable_data<T>(ctx.GetPlace());
56
    auto dims_equal = x->dims() == y->dims();
57
    if (dims_equal) {
58 59
      SameDimsElemwiseAdd<DeviceContext, T> same_dims_add;
      same_dims_add(ctx, x, y, z);
60
    } else {
61
      DefaultElementwiseAddGrad<DeviceContext, T>(ctx, x, y, z);
62
    }
G
gongweibao 已提交
63 64 65 66
  }
};

template <typename T>
Y
Yu Yang 已提交
67 68
struct IdentityGrad {
  HOSTDEVICE T operator()(T x, T y, T out, T dout) const { return dout; }
G
gongweibao 已提交
69 70
};

71
template <typename DeviceContext, typename T>
72 73 74 75 76 77
void DefaultElementwiseAddGrad(const framework::ExecutionContext &ctx,
                               const framework::Tensor *x,
                               const framework::Tensor *y,
                               const framework::Tensor *out,
                               const framework::Tensor *dout,
                               framework::Tensor *dx, framework::Tensor *dy) {
78 79
  int axis = ctx.Attr<int>("axis");

80 81 82 83
  ElemwiseExplicitGradCompute<DeviceContext, T, IdentityGrad<T>,
                              IdentityGrad<T>>(ctx, *x, *y, *out, *dout, axis,
                                               dx, dy, IdentityGrad<T>(),
                                               IdentityGrad<T>());
84 85
}

86
template <typename DeviceContext, typename T>
87 88 89
typename std::enable_if<
    std::is_floating_point<T>::value &&
    std::is_same<DeviceContext, platform::CPUDeviceContext>::value>::type
90 91 92 93
ElementwiseAddGrad(const framework::ExecutionContext &ctx,
                   const framework::Tensor *x, const framework::Tensor *y,
                   const framework::Tensor *out, const framework::Tensor *dout,
                   framework::Tensor *dx, framework::Tensor *dy) {
94 95 96 97 98 99 100 101 102 103 104 105
  auto blas = math::GetBlas<DeviceContext, T>(ctx);
  if (dx) {
    blas.VCOPY(dout->numel(), dout->data<T>(),
               dx->mutable_data<T>(ctx.GetPlace()));
  }

  if (dy) {
    blas.VCOPY(dout->numel(), dout->data<T>(),
               dy->mutable_data<T>(ctx.GetPlace()));
  }
}

106
template <typename DeviceContext, typename T>
107
typename std::enable_if<
108 109
    !std::is_floating_point<T>::value &&
    std::is_same<DeviceContext, platform::CPUDeviceContext>::value>::type
110 111 112 113 114
ElementwiseAddGrad(const framework::ExecutionContext &ctx,
                   const framework::Tensor *x, const framework::Tensor *y,
                   const framework::Tensor *out, const framework::Tensor *dout,
                   framework::Tensor *dx, framework::Tensor *dy) {
  DefaultElementwiseAddGrad<DeviceContext, T>(ctx, x, y, out, dout, dx, dy);
115 116
}

117 118 119 120 121
#ifdef PADDLE_WITH_CUDA
// cuda definition
template <typename DeviceContext, typename T>
typename std::enable_if<
    std::is_same<DeviceContext, platform::CUDADeviceContext>::value>::type
122 123 124 125
ElementwiseAddGrad(const framework::ExecutionContext &ctx,
                   const framework::Tensor *x, const framework::Tensor *y,
                   const framework::Tensor *out, const framework::Tensor *dout,
                   framework::Tensor *dx, framework::Tensor *dy);
126 127
#endif

Q
QI JUN 已提交
128
template <typename DeviceContext, typename T>
129
class ElementwiseAddGradKernel : public ElemwiseGradKernel<T> {
G
gongweibao 已提交
130
 public:
C
chengduo 已提交
131
  void Compute(const framework::ExecutionContext &ctx) const override {
132 133
    ElemwiseGradKernel<T>::Compute(ctx);

C
chengduoZH 已提交
134 135
    using Tensor = framework::Tensor;

136 137
    auto *x = ctx.Input<Tensor>("X");
    auto *y = ctx.Input<Tensor>("Y");
C
chengduo 已提交
138 139 140
    auto *dout = ctx.Input<Tensor>(framework::GradVarName("Out"));
    auto *dx = ctx.Output<Tensor>(framework::GradVarName("X"));
    auto *dy = ctx.Output<Tensor>(framework::GradVarName("Y"));
141
    // skip out
C
chengduo 已提交
142
    auto *out = dout;
143

144 145 146 147 148 149 150 151 152 153 154 155 156 157
    // Special case when dy is not needed and dx doesn't reduce
    if (dx != nullptr && dy == nullptr && dx->dims() == dout->dims()) {
      VLOG(4) << "Special case when dy is not needed and dx doesn't "
                 "reduce";
      framework::TensorCopy(
          *dout, ctx.GetPlace(),
          ctx.template device_context<platform::DeviceContext>(), dx);
    } else if (dx == nullptr && dy != nullptr && dy->dims() == dout->dims()) {
      VLOG(4) << "Special case when dx is not needed and dy doesn't "
                 "reduce";
      framework::TensorCopy(
          *dout, ctx.GetPlace(),
          ctx.template device_context<platform::DeviceContext>(), dy);
    } else if (dx != nullptr && dy != nullptr && (dx->dims() == dy->dims())) {
158
      ElementwiseAddGrad<DeviceContext, T>(ctx, x, y, out, dout, dx, dy);
159
    } else {
160
      DefaultElementwiseAddGrad<DeviceContext, T>(ctx, x, y, out, dout, dx, dy);
161
    }
G
gongweibao 已提交
162 163 164
  }
};

165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184
template <typename DeviceContext, typename T>
class ElementwiseAddDoubleGradKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext &ctx) const override {
    using Tensor = framework::Tensor;

    auto *y = ctx.Input<Tensor>("Y");
    auto *dout = ctx.Input<Tensor>("DOut");
    auto *ddx = ctx.Input<Tensor>("DDX");
    auto *ddy = ctx.Input<Tensor>("DDY");

    auto *ddout = ctx.Output<Tensor>("DDOut");

    // ddOut = ddx + ddy
    if (ddout) {
      Tensor ddx_safe, ddy_safe;
      GetDoubleGradSafeTensor<DeviceContext, T>(ctx, dout, ddx, &ddx_safe);
      GetDoubleGradSafeTensor<DeviceContext, T>(ctx, y, ddy, &ddy_safe);

      ddout->mutable_data<T>(ctx.GetPlace());
185 186
      DefaultElementwiseAddGrad<DeviceContext, T>(ctx, &ddx_safe, &ddy_safe,
                                                  ddout);
187 188 189 190
    }
  }
};

G
gongweibao 已提交
191 192
}  // namespace operators
}  // namespace paddle