elementwise_add_op.h 7.2 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
G
gongweibao 已提交
2

L
Luo Tao 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
G
gongweibao 已提交
6

L
Luo Tao 已提交
7
    http://www.apache.org/licenses/LICENSE-2.0
G
gongweibao 已提交
8

L
Luo Tao 已提交
9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
G
gongweibao 已提交
14

F
fengjiayi 已提交
15 16
#pragma once

17
#include "paddle/fluid/framework/eigen.h"
W
Wu Yi 已提交
18 19
#include "paddle/fluid/operators/elementwise/elementwise_op.h"
#include "paddle/fluid/operators/elementwise/elementwise_op_function.h"
20
#include "paddle/fluid/operators/math/blas.h"
G
gongweibao 已提交
21 22 23 24

namespace paddle {
namespace operators {

C
chengduoZH 已提交
25 26
template <typename T>
struct AddFunctor {
C
chengduoZH 已提交
27
  inline HOSTDEVICE T operator()(T a, T b) const { return a + b; }
C
chengduoZH 已提交
28 29
};

30
template <typename DeviceContext, typename T>
C
chengduo 已提交
31 32 33
void default_elementwise_add(const framework::ExecutionContext &ctx,
                             const framework::Tensor *x,
                             const framework::Tensor *y, framework::Tensor *z) {
34 35 36 37 38 39
  int axis = ctx.Attr<int>("axis");
  ElementwiseComputeEx<AddFunctor<T>, DeviceContext, T>(ctx, x, y, axis,
                                                        AddFunctor<T>(), z);
}

template <typename DeviceContext, typename T>
40 41 42
typename std::enable_if<
    std::is_floating_point<T>::value &&
    std::is_same<DeviceContext, platform::CPUDeviceContext>::value>::type
43 44 45
elementwise_add_same_dims(const framework::ExecutionContext &ctx,
                          const framework::Tensor *x,
                          const framework::Tensor *y, framework::Tensor *z) {
46
  auto blas = math::GetBlas<DeviceContext, T>(ctx);
47
  blas.VADD(x->numel(), x->data<T>(), y->data<T>(), z->data<T>());
48 49 50
}

template <typename DeviceContext, typename T>
51 52 53
typename std::enable_if<
    !std::is_floating_point<T>::value ||
    !std::is_same<DeviceContext, platform::CPUDeviceContext>::value>::type
54 55 56 57 58 59 60 61 62
elementwise_add_same_dims(const framework::ExecutionContext &ctx,
                          const framework::Tensor *x,
                          const framework::Tensor *y, framework::Tensor *z) {
  auto eigen_x = framework::EigenVector<T>::Flatten(*x);
  auto eigen_y = framework::EigenVector<T>::Flatten(*y);
  auto eigen_z = framework::EigenVector<T>::Flatten(*z);

  auto &place = *ctx.template device_context<DeviceContext>().eigen_device();
  eigen_z.device(place) = eigen_x + eigen_y;
63 64
}

Q
QI JUN 已提交
65
template <typename DeviceContext, typename T>
Y
Yu Yang 已提交
66
class ElementwiseAddKernel : public framework::OpKernel<T> {
G
gongweibao 已提交
67
 public:
C
chengduo 已提交
68 69 70 71
  void Compute(const framework::ExecutionContext &ctx) const override {
    auto *x = ctx.Input<framework::LoDTensor>("X");
    auto *y = ctx.Input<framework::LoDTensor>("Y");
    auto *z = ctx.Output<framework::LoDTensor>("Out");
C
chengduoZH 已提交
72 73

    z->mutable_data<T>(ctx.GetPlace());
74 75

    auto dims_equal = x->dims() == y->dims();
76
    if (dims_equal) {
77
      elementwise_add_same_dims<DeviceContext, T>(ctx, x, y, z);
78
    } else {
79
      default_elementwise_add<DeviceContext, T>(ctx, x, y, z);
80
    }
G
gongweibao 已提交
81 82 83 84
  }
};

template <typename T>
Y
Yu Yang 已提交
85 86
struct IdentityGrad {
  HOSTDEVICE T operator()(T x, T y, T out, T dout) const { return dout; }
G
gongweibao 已提交
87 88
};

89
template <typename DeviceContext, typename T>
C
chengduo 已提交
90 91 92 93 94 95 96
void default_elementwise_add_grad(const framework::ExecutionContext &ctx,
                                  const framework::Tensor *x,
                                  const framework::Tensor *y,
                                  const framework::Tensor *out,
                                  const framework::Tensor *dout,
                                  framework::Tensor *dx,
                                  framework::Tensor *dy) {
97 98
  int axis = ctx.Attr<int>("axis");

99 100 101 102
  ElemwiseExplicitGradCompute<DeviceContext, T, IdentityGrad<T>,
                              IdentityGrad<T>>(ctx, *x, *y, *out, *dout, axis,
                                               dx, dy, IdentityGrad<T>(),
                                               IdentityGrad<T>());
103 104
}

105
template <typename DeviceContext, typename T>
106 107 108
typename std::enable_if<
    std::is_floating_point<T>::value &&
    std::is_same<DeviceContext, platform::CPUDeviceContext>::value>::type
C
chengduo 已提交
109 110 111 112 113
elementwise_add_grad(const framework::ExecutionContext &ctx,
                     const framework::Tensor *x, const framework::Tensor *y,
                     const framework::Tensor *out,
                     const framework::Tensor *dout, framework::Tensor *dx,
                     framework::Tensor *dy) {
114 115 116 117 118 119 120 121 122 123 124 125 126
  auto blas = math::GetBlas<DeviceContext, T>(ctx);

  if (dx) {
    blas.VCOPY(dout->numel(), dout->data<T>(),
               dx->mutable_data<T>(ctx.GetPlace()));
  }

  if (dy) {
    blas.VCOPY(dout->numel(), dout->data<T>(),
               dy->mutable_data<T>(ctx.GetPlace()));
  }
}

127
template <typename DeviceContext, typename T>
128 129 130
typename std::enable_if<
    !std::is_floating_point<T>::value ||
    !std::is_same<DeviceContext, platform::CPUDeviceContext>::value>::type
C
chengduo 已提交
131 132 133 134 135
elementwise_add_grad(const framework::ExecutionContext &ctx,
                     const framework::Tensor *x, const framework::Tensor *y,
                     const framework::Tensor *out,
                     const framework::Tensor *dout, framework::Tensor *dx,
                     framework::Tensor *dy) {
136 137 138
  default_elementwise_add_grad<DeviceContext, T>(ctx, x, y, out, dout, dx, dy);
}

Q
QI JUN 已提交
139
template <typename DeviceContext, typename T>
140
class ElementwiseAddGradKernel : public ElemwiseGradKernel<T> {
G
gongweibao 已提交
141
 public:
C
chengduo 已提交
142
  void Compute(const framework::ExecutionContext &ctx) const override {
143 144
    ElemwiseGradKernel<T>::Compute(ctx);

C
chengduoZH 已提交
145 146
    using Tensor = framework::Tensor;

C
chengduo 已提交
147 148 149
    auto *dout = ctx.Input<Tensor>(framework::GradVarName("Out"));
    auto *dx = ctx.Output<Tensor>(framework::GradVarName("X"));
    auto *dy = ctx.Output<Tensor>(framework::GradVarName("Y"));
T
tensor-tang 已提交
150
    // skip out, x, y
C
chengduo 已提交
151
    auto *out = dout;
T
tensor-tang 已提交
152
    auto *x = dout, *y = dout;
153

T
tensor-tang 已提交
154 155 156
    if (platform::is_cpu_place(ctx.GetPlace()) && dx != nullptr &&
        dy != nullptr && (dx->dims() == dy->dims())) {
      elementwise_add_grad<DeviceContext, T>(ctx, x, y, out, dout, dx, dy);
157
    } else {
T
tensor-tang 已提交
158 159
      default_elementwise_add_grad<DeviceContext, T>(ctx, x, y, out, dout, dx,
                                                     dy);
160
    }
G
gongweibao 已提交
161 162 163
  }
};

164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189
template <typename DeviceContext, typename T>
class ElementwiseAddDoubleGradKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext &ctx) const override {
    using Tensor = framework::Tensor;

    auto *y = ctx.Input<Tensor>("Y");
    auto *dout = ctx.Input<Tensor>("DOut");
    auto *ddx = ctx.Input<Tensor>("DDX");
    auto *ddy = ctx.Input<Tensor>("DDY");

    auto *ddout = ctx.Output<Tensor>("DDOut");

    // ddOut = ddx + ddy
    if (ddout) {
      Tensor ddx_safe, ddy_safe;
      GetDoubleGradSafeTensor<DeviceContext, T>(ctx, dout, ddx, &ddx_safe);
      GetDoubleGradSafeTensor<DeviceContext, T>(ctx, y, ddy, &ddy_safe);

      ddout->mutable_data<T>(ctx.GetPlace());
      default_elementwise_add<DeviceContext, T>(ctx, &ddx_safe, &ddy_safe,
                                                ddout);
    }
  }
};

G
gongweibao 已提交
190 191
}  // namespace operators
}  // namespace paddle