engine.h 7.8 KB
Newer Older
Y
Yan Chunwei 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once

#include <NvInfer.h>
#include <memory>
19
#include <string>
Y
Yan Chunwei 已提交
20
#include <unordered_map>
21
#include <vector>
N
nhzlx 已提交
22
#include "paddle/fluid/framework/tensor.h"
Y
Yan Chunwei 已提交
23 24
#include "paddle/fluid/inference/engine.h"
#include "paddle/fluid/inference/tensorrt/helper.h"
25
#include "paddle/fluid/inference/tensorrt/plugin/trt_plugin.h"
26
#include "paddle/fluid/inference/utils/singleton.h"
Y
Yan Chunwei 已提交
27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42

namespace paddle {
namespace inference {
namespace tensorrt {

/*
 * TensorRT Engine.
 *
 * There are two alternative ways to use it, one is  to build from a paddle
 * protobuf model, another way is to manully construct the network.
 */
class TensorRTEngine : public EngineBase {
 public:
  // Weight is model parameter.
  class Weight {
   public:
43
    Weight() = default;
44
    Weight(nvinfer1::DataType dtype, void* value, size_t num_elem) {
Y
Yan Chunwei 已提交
45 46 47 48
      w_.type = dtype;
      w_.values = value;
      w_.count = num_elem;
    }
49
    const nvinfer1::Weights& get() { return w_; }
Y
Yan Chunwei 已提交
50

51 52
    std::vector<int64_t> dims;

Y
Yan Chunwei 已提交
53 54 55 56
   private:
    nvinfer1::Weights w_;
  };

N
nhzlx 已提交
57 58
  TensorRTEngine(int max_batch, int max_workspace, cudaStream_t stream,
                 int device = 0,
Y
Yan Chunwei 已提交
59 60 61
                 nvinfer1::ILogger& logger = NaiveLogger::Global())
      : max_batch_(max_batch),
        max_workspace_(max_workspace),
N
nhzlx 已提交
62
        stream_(stream),
N
nhzlx 已提交
63
        logger_(logger),
N
nhzlx 已提交
64
        device_(device) {}
Y
Yan Chunwei 已提交
65 66 67 68

  virtual ~TensorRTEngine();

  // TODO(Superjomn) implement it later when graph segmentation is supported.
69
  void Build(const DescType& paddle_model) override;
Y
Yan Chunwei 已提交
70

71
  void Execute(int batch_size) override;
Y
Yan Chunwei 已提交
72 73 74 75

  // Initialize the inference network, so that TensorRT layers can add to this
  // network.
  void InitNetwork() {
76
    infer_builder_.reset(createInferBuilder(&logger_));
Y
Yan Chunwei 已提交
77 78 79 80 81 82 83 84 85 86 87 88 89 90
    infer_network_.reset(infer_builder_->createNetwork());
  }
  // After finishing adding ops, freeze this network and creates the executation
  // environment.
  void FreezeNetwork();

  // Add an input and set its name, data type and dimention.
  nvinfer1::ITensor* DeclareInput(const std::string& name,
                                  nvinfer1::DataType dtype,
                                  const nvinfer1::Dims& dim);
  // Set the offset-th output from a layer as the network's output, and set its
  // name.
  void DeclareOutput(const nvinfer1::ILayer* layer, int offset,
                     const std::string& name);
L
Luo Tao 已提交
91 92
  // Set the itensor_map_[name] as the network's output, and set its name.
  void DeclareOutput(const std::string& name);
N
nhzlx 已提交
93 94
  // Check if the ITensor has been declared
  bool HasDeclared(const std::string& name);
Y
Yan Chunwei 已提交
95 96 97 98 99

  // GPU memory address for an ITensor with specific name. One can operate on
  // these memory directly for acceleration, for example, output the converted
  // data directly to the buffer to save data copy overhead.
  // NOTE this should be used after calling `FreezeNetwork`.
Y
Yan Chunwei 已提交
100 101
  Buffer& buffer(const std::string& name) override;

N
nhzlx 已提交
102
  cudaStream_t stream() { return stream_; }
Y
Yan Chunwei 已提交
103 104

  // Fill an input from CPU memory with name and size.
105
  void SetInputFromCPU(const std::string& name, const void* data, size_t size);
Y
Yan Chunwei 已提交
106 107
  // TODO(Superjomn) is this method necessary given that buffer(xxx) can be
  // accessed directly. Fill an input from GPU memory with name and size.
108
  void SetInputFromGPU(const std::string& name, const void* data, size_t size);
Y
Yan Chunwei 已提交
109
  // Get an output called name, the output of tensorrt is in GPU, so this method
110
  // Return the output's GPU memory address without copy.
Y
Yan Chunwei 已提交
111
  void* GetOutputInGPU(const std::string& name);
112
  // Copy data into dst inside the GPU device.
N
nhzlx 已提交
113
  void GetOutputInGPU(const std::string& name, void* dst, size_t max_size);
Y
Yan Chunwei 已提交
114 115
  // LOW EFFICENCY! Get output to CPU, this will trigger a memory copy from GPU
  // to CPU.
N
nhzlx 已提交
116
  void GetOutputInCPU(const std::string& name, void* dst, size_t max_size);
L
Luo Tao 已提交
117 118 119 120
  // Fill an ITensor into map itensor_map_.
  void SetITensor(const std::string& name, nvinfer1::ITensor* tensor);
  // Get an ITensor called name.
  nvinfer1::ITensor* GetITensor(const std::string& name);
Y
Yan Chunwei 已提交
121 122 123

  nvinfer1::ICudaEngine* engine() { return infer_engine_.get(); }
  nvinfer1::INetworkDefinition* network() { return infer_network_.get(); }
124 125
  void SetRuntimeBatch(size_t batch_size);
  int GetRuntimeBatch();
N
nhzlx 已提交
126
  int GetDevice() { return device_; }
N
nhzlx 已提交
127
  nvinfer1::IPluginLayer* AddPlugin(nvinfer1::ITensor* const* inputs,
128
                                    int num_inputs, plugin::PluginTensorRT*);
N
nhzlx 已提交
129 130 131 132 133 134 135 136

  // A pointer to CPU memory is needed of the TRT weight.
  // Before TRT runs, fluid loads weight into GPU storage.
  // so we need to copy the weights from GPU to CPU in our op converter.
  // We use a map to store these weights for the weight memory is not released
  // in advance, which affecting the construction of TRT Op.
  std::unordered_map<std::string /*name*/, std::unique_ptr<framework::Tensor>>
      weight_map;
Y
Yan Chunwei 已提交
137

138
  // TODO(NHZLX)
N
nhzlx 已提交
139 140 141 142 143 144 145 146 147
  // In the normal case, the paddle-trt exists bug when runing the googlenet.
  // When there are more than two convolutions of 1 * 1 with the same input, the
  // paddle-tensorrt will do the merging optimization, which fuse those conv
  // into
  // one conv, and then trigger bug. So,  We should use strategy to avoid this
  // optimization for the time being. This bug will be fixed in the future.
  std::unordered_map<std::string /*name*/, int /*ITensor_quote_num*/>
      itensor_quote_num;

Y
Yan Chunwei 已提交
148 149 150
 private:
  // the max batch size
  int max_batch_;
151 152
  // the runtime batch size
  static int runtime_batch_;
Y
Yan Chunwei 已提交
153 154
  // the max memory size the engine uses
  int max_workspace_;
155 156 157

  // batch size of the current data, will be updated each Executation.
  int batch_size_{-1};
N
nhzlx 已提交
158 159
  cudaStream_t stream_;

Y
Yan Chunwei 已提交
160 161
  nvinfer1::ILogger& logger_;

Y
Yan Chunwei 已提交
162
  std::vector<Buffer> buffers_;
Y
Yan Chunwei 已提交
163 164
  // max data size for the buffers.
  std::unordered_map<std::string /*name*/, size_t /*max size*/> buffer_sizes_;
L
Luo Tao 已提交
165 166
  std::unordered_map<std::string /*name*/, nvinfer1::ITensor* /*ITensor*/>
      itensor_map_;
167

N
nhzlx 已提交
168 169
  // The specific GPU id that the TensorRTEngine bounded to.
  int device_;
170
  std::vector<std::unique_ptr<plugin::PluginTensorRT>> owned_plugin_;
Y
Yan Chunwei 已提交
171 172 173 174

  // TensorRT related internal members
  template <typename T>
  struct Destroyer {
175 176 177 178 179
    void operator()(T* x) {
      if (x) {
        x->destroy();
      }
    }
Y
Yan Chunwei 已提交
180 181 182 183 184 185 186
  };
  template <typename T>
  using infer_ptr = std::unique_ptr<T, Destroyer<T>>;
  infer_ptr<nvinfer1::IBuilder> infer_builder_;
  infer_ptr<nvinfer1::INetworkDefinition> infer_network_;
  infer_ptr<nvinfer1::ICudaEngine> infer_engine_;
  infer_ptr<nvinfer1::IExecutionContext> infer_context_;
N
nhzlx 已提交
187 188 189 190
  // Each ICudaEngine object is bound to a specific GPU when it is instantiated,
  // ensure that the thread is associated with the correct device by calling
  // freshDeviceId().
  void freshDeviceId();
Y
Yan Chunwei 已提交
191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209
};  // class TensorRTEngine

// Add an layer__ into engine__ with args ARGS.
// For example:
//   TRT_ENGINE_ADD_LAYER(xxx, FullyConnected, input, dim, weights, bias)
//
// Reference
// https://docs.nvidia.com/deeplearning/sdk/tensorrt-developer-guide/index.html#charRNN_define_network
//
// will add a fully connected layer into the engine.
// TensorRT has too many layers, so that is not wise to add member functions for
// them, and an macro like this is more extensible when underlying TensorRT
// library add new layer supports.
#define TRT_ENGINE_ADD_LAYER(engine__, layer__, ARGS...) \
  engine__->network()->add##layer__(ARGS);

}  // namespace tensorrt
}  // namespace inference
}  // namespace paddle