gan_trainer.py 5.2 KB
Newer Older
X
xuwei06 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141
# Copyright (c) 2016 Baidu, Inc. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import argparse
import itertools
import random
import numpy

from paddle.trainer.config_parser import parse_config
from paddle.trainer.config_parser import logger
import py_paddle.swig_paddle as api
from py_paddle import DataProviderConverter


def CHECK_EQ(a, b):
    assert a == b, "a=%s, b=%s" % (a, b)


def copy_shared_parameters(src, dst):
    src_params = [src.getParameter(i)
               for i in xrange(src.getParameterSize())]
    src_params = dict([(p.getName(), p) for p in src_params])

    for i in xrange(dst.getParameterSize()):
        dst_param = dst.getParameter(i)
        src_param = src_params.get(dst_param.getName(), None)
        if src_param is None:
            continue
        src_value = src_param.getBuf(api.PARAMETER_VALUE)
        dst_value = dst_param.getBuf(api.PARAMETER_VALUE)
        CHECK_EQ(len(src_value), len(dst_value))
        dst_value.copyFrom(src_value)
        dst_param.setValueUpdated()


def get_real_samples(batch_size, sample_dim):
    return numpy.random.rand(batch_size, sample_dim).astype('float32')


def prepare_discriminator_data_batch(
        generator_machine, batch_size, noise_dim, sample_dim):
    gen_inputs = prepare_generator_data_batch(batch_size / 2, noise_dim)
    gen_inputs.resize(1)
    gen_outputs = api.Arguments.createArguments(0)
    generator_machine.forward(gen_inputs, gen_outputs, api.PASS_TEST)
    fake_samples = gen_outputs.getSlotValue(0).copyToNumpyMat()
    real_samples = get_real_samples(batch_size / 2, sample_dim)
    all_samples = numpy.concatenate((fake_samples, real_samples), 0)
    all_labels = numpy.concatenate(
        (numpy.zeros(batch_size / 2, dtype='int32'),
         numpy.ones(batch_size / 2, dtype='int32')), 0)
    inputs = api.Arguments.createArguments(2)
    inputs.setSlotValue(0, api.Matrix.createCpuDenseFromNumpy(all_samples))
    inputs.setSlotIds(1, api.IVector.createCpuVectorFromNumpy(all_labels))
    return inputs


def prepare_generator_data_batch(batch_size, dim):
    noise = numpy.random.normal(size=(batch_size, dim)).astype('float32')
    label = numpy.ones(batch_size, dtype='int32')
    inputs = api.Arguments.createArguments(2)
    inputs.setSlotValue(0, api.Matrix.createCpuDenseFromNumpy(noise))
    inputs.setSlotIds(1, api.IVector.createCpuVectorFromNumpy(label))
    return inputs


def find(iterable, cond):
    for item in iterable:
        if cond(item):
            return item
    return None


def get_layer_size(model_conf, layer_name):
    layer_conf = find(model_conf.layers, lambda x: x.name == layer_name)
    assert layer_conf is not None, "Cannot find '%s' layer" % layer_name
    return layer_conf.size


def main():
    api.initPaddle('--use_gpu=0', '--dot_period=100', '--log_period=10000')
    gen_conf = parse_config("gan_conf.py", "mode=generator_training")
    dis_conf = parse_config("gan_conf.py", "mode=discriminator_training")
    generator_conf = parse_config("gan_conf.py", "mode=generator")
    batch_size = dis_conf.opt_config.batch_size
    noise_dim = get_layer_size(gen_conf.model_config, "noise")
    sample_dim = get_layer_size(dis_conf.model_config, "sample")

    # this create a gradient machine for discriminator
    dis_training_machine = api.GradientMachine.createFromConfigProto(
        dis_conf.model_config)

    gen_training_machine = api.GradientMachine.createFromConfigProto(
        gen_conf.model_config)

    # generator_machine is used to generate data only, which is used for
    # training discrinator
    logger.info(str(generator_conf.model_config))
    generator_machine = api.GradientMachine.createFromConfigProto(
        generator_conf.model_config)

    dis_trainer = api.Trainer.create(
        dis_conf, dis_training_machine)

    gen_trainer = api.Trainer.create(
        gen_conf, gen_training_machine)

    dis_trainer.startTrain()
    gen_trainer.startTrain()
    for train_pass in xrange(10):
        dis_trainer.startTrainPass()
        gen_trainer.startTrainPass()
        for i in xrange(100000):
            copy_shared_parameters(gen_training_machine, generator_machine)
            copy_shared_parameters(gen_training_machine, dis_training_machine)
            data_batch = prepare_discriminator_data_batch(
                generator_machine, batch_size, noise_dim, sample_dim)
            dis_trainer.trainOneDataBatch(batch_size, data_batch)

            copy_shared_parameters(dis_training_machine, gen_training_machine)
            data_batch = prepare_generator_data_batch(
                batch_size, noise_dim)
            gen_trainer.trainOneDataBatch(batch_size, data_batch)
        dis_trainer.finishTrainPass()
        gen_trainer.finishTrainPass()
    dis_trainer.finishTrain()
    gen_trainer.finishTrain()

if __name__ == '__main__':
    main()