# Copyright (c) 2016 Baidu, Inc. All Rights Reserved # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import itertools import random import numpy from paddle.trainer.config_parser import parse_config from paddle.trainer.config_parser import logger import py_paddle.swig_paddle as api from py_paddle import DataProviderConverter def CHECK_EQ(a, b): assert a == b, "a=%s, b=%s" % (a, b) def copy_shared_parameters(src, dst): src_params = [src.getParameter(i) for i in xrange(src.getParameterSize())] src_params = dict([(p.getName(), p) for p in src_params]) for i in xrange(dst.getParameterSize()): dst_param = dst.getParameter(i) src_param = src_params.get(dst_param.getName(), None) if src_param is None: continue src_value = src_param.getBuf(api.PARAMETER_VALUE) dst_value = dst_param.getBuf(api.PARAMETER_VALUE) CHECK_EQ(len(src_value), len(dst_value)) dst_value.copyFrom(src_value) dst_param.setValueUpdated() def get_real_samples(batch_size, sample_dim): return numpy.random.rand(batch_size, sample_dim).astype('float32') def prepare_discriminator_data_batch( generator_machine, batch_size, noise_dim, sample_dim): gen_inputs = prepare_generator_data_batch(batch_size / 2, noise_dim) gen_inputs.resize(1) gen_outputs = api.Arguments.createArguments(0) generator_machine.forward(gen_inputs, gen_outputs, api.PASS_TEST) fake_samples = gen_outputs.getSlotValue(0).copyToNumpyMat() real_samples = get_real_samples(batch_size / 2, sample_dim) all_samples = numpy.concatenate((fake_samples, real_samples), 0) all_labels = numpy.concatenate( (numpy.zeros(batch_size / 2, dtype='int32'), numpy.ones(batch_size / 2, dtype='int32')), 0) inputs = api.Arguments.createArguments(2) inputs.setSlotValue(0, api.Matrix.createCpuDenseFromNumpy(all_samples)) inputs.setSlotIds(1, api.IVector.createCpuVectorFromNumpy(all_labels)) return inputs def prepare_generator_data_batch(batch_size, dim): noise = numpy.random.normal(size=(batch_size, dim)).astype('float32') label = numpy.ones(batch_size, dtype='int32') inputs = api.Arguments.createArguments(2) inputs.setSlotValue(0, api.Matrix.createCpuDenseFromNumpy(noise)) inputs.setSlotIds(1, api.IVector.createCpuVectorFromNumpy(label)) return inputs def find(iterable, cond): for item in iterable: if cond(item): return item return None def get_layer_size(model_conf, layer_name): layer_conf = find(model_conf.layers, lambda x: x.name == layer_name) assert layer_conf is not None, "Cannot find '%s' layer" % layer_name return layer_conf.size def main(): api.initPaddle('--use_gpu=0', '--dot_period=100', '--log_period=10000') gen_conf = parse_config("gan_conf.py", "mode=generator_training") dis_conf = parse_config("gan_conf.py", "mode=discriminator_training") generator_conf = parse_config("gan_conf.py", "mode=generator") batch_size = dis_conf.opt_config.batch_size noise_dim = get_layer_size(gen_conf.model_config, "noise") sample_dim = get_layer_size(dis_conf.model_config, "sample") # this create a gradient machine for discriminator dis_training_machine = api.GradientMachine.createFromConfigProto( dis_conf.model_config) gen_training_machine = api.GradientMachine.createFromConfigProto( gen_conf.model_config) # generator_machine is used to generate data only, which is used for # training discrinator logger.info(str(generator_conf.model_config)) generator_machine = api.GradientMachine.createFromConfigProto( generator_conf.model_config) dis_trainer = api.Trainer.create( dis_conf, dis_training_machine) gen_trainer = api.Trainer.create( gen_conf, gen_training_machine) dis_trainer.startTrain() gen_trainer.startTrain() for train_pass in xrange(10): dis_trainer.startTrainPass() gen_trainer.startTrainPass() for i in xrange(100000): copy_shared_parameters(gen_training_machine, generator_machine) copy_shared_parameters(gen_training_machine, dis_training_machine) data_batch = prepare_discriminator_data_batch( generator_machine, batch_size, noise_dim, sample_dim) dis_trainer.trainOneDataBatch(batch_size, data_batch) copy_shared_parameters(dis_training_machine, gen_training_machine) data_batch = prepare_generator_data_batch( batch_size, noise_dim) gen_trainer.trainOneDataBatch(batch_size, data_batch) dis_trainer.finishTrainPass() gen_trainer.finishTrainPass() dis_trainer.finishTrain() gen_trainer.finishTrain() if __name__ == '__main__': main()