analysis_predictor_tester.cc 15.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

15
#include "paddle/fluid/inference/api/analysis_predictor.h"
16 17 18
#if defined(PADDLE_WITH_CUDA)
#include <cuda_runtime.h>
#endif
19 20
#include <glog/logging.h>
#include <gtest/gtest.h>
21
#include <thread>  // NOLINT
Y
Yan Chunwei 已提交
22
#include "paddle/fluid/framework/ir/pass.h"
23
#include "paddle/fluid/framework/tensor.h"
24
#include "paddle/fluid/inference/api/helper.h"
25
#include "paddle/fluid/inference/api/paddle_api.h"
26
#include "paddle/fluid/inference/api/paddle_inference_api.h"
Y
Yan Chunwei 已提交
27
#include "paddle/fluid/inference/tests/api/tester_helper.h"
28
#include "paddle/fluid/inference/utils/io_utils.h"
29
#include "paddle/fluid/platform/cpu_info.h"
30 31 32 33 34

DEFINE_string(dirname, "", "dirname to tests.");

namespace paddle {

35
TEST(AnalysisPredictor, analysis_off) {
36 37 38
  AnalysisConfig config;
  config.SetModel(FLAGS_dirname);
  config.SwitchIrOptim(false);
39
  LOG(INFO) << config.Summary();
40 41
  LOG(INFO) << "Shape Info collected: " << config.shape_range_info_collected()
            << ", path: " << config.shape_range_info_path();
42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66

  auto _predictor = CreatePaddlePredictor<AnalysisConfig>(config);
  auto* predictor = static_cast<AnalysisPredictor*>(_predictor.get());

  // Without analysis, the scope_ and sub_scope_ are created by predictor
  // itself.
  ASSERT_TRUE(predictor->scope_);
  ASSERT_TRUE(predictor->sub_scope_);
  ASSERT_EQ(predictor->scope_->parent(), nullptr);
  ASSERT_EQ(predictor->sub_scope_->parent(), predictor->scope_.get());
  // ir is turned off, so program shouldn't be optimized.
  LOG(INFO) << "scope parameters " << predictor->scope_->LocalVarNames().size();

  // 2. Dummy Input Data
  int64_t data[4] = {1, 2, 3, 4};
  PaddleTensor tensor;
  tensor.shape = std::vector<int>({4, 1});
  tensor.data.Reset(data, sizeof(data));
  tensor.dtype = PaddleDType::INT64;

  std::vector<PaddleTensor> inputs(4, tensor);
  std::vector<PaddleTensor> outputs;
  ASSERT_TRUE(predictor->Run(inputs, &outputs));
}

67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86
#ifndef WIN32
TEST(AnalysisPredictor, lite_nn_adapter_npu) {
  AnalysisConfig config;
  config.SetModel(FLAGS_dirname);
  config.EnableLiteEngine();
  config.NNAdapter()
      .Disable()
      .Enable()
      .SetDeviceNames({"huawei_ascend_npu"})
      .SetContextProperties("HUAWEI_ASCEND_NPU_SELECTED_DEVICE_IDS=0")
      .SetModelCacheDir("cache_dirr")
      .SetSubgraphPartitionConfigPath("")
      .SetModelCacheBuffers("c1", {'c'});
#ifndef LITE_SUBGRAPH_WITH_NNADAPTER
  EXPECT_THROW(CreatePaddlePredictor<AnalysisConfig>(config),
               paddle::platform::EnforceNotMet);
#endif
}
#endif

87
TEST(AnalysisPredictor, analysis_on) {
88 89 90
  AnalysisConfig config;
  config.SetModel(FLAGS_dirname);
  config.SwitchIrOptim(true);
91
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
92
  config.EnableUseGpu(100, 0);
93
#else
94
  config.DisableGpu();
95
#endif
96
  LOG(INFO) << config.Summary();
97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116

  auto _predictor = CreatePaddlePredictor<AnalysisConfig>(config);
  auto* predictor = static_cast<AnalysisPredictor*>(_predictor.get());

  ASSERT_TRUE(predictor->scope_);
  ASSERT_TRUE(predictor->sub_scope_);
  ASSERT_EQ(predictor->scope_->parent(), nullptr);
  ASSERT_EQ(predictor->sub_scope_->parent(), predictor->scope_.get());
  // 2. Dummy Input Data
  int64_t data[4] = {1, 2, 3, 4};
  PaddleTensor tensor;
  tensor.shape = std::vector<int>({4, 1});
  tensor.data.Reset(data, sizeof(data));
  tensor.dtype = PaddleDType::INT64;

  std::vector<PaddleTensor> inputs(4, tensor);
  std::vector<PaddleTensor> outputs;
  ASSERT_TRUE(predictor->Run(inputs, &outputs));

  // compare with NativePredictor
117 118
  auto naive_predictor =
      CreatePaddlePredictor<NativeConfig>(config.ToNativeConfig());
119 120 121 122 123 124
  std::vector<PaddleTensor> naive_outputs;
  ASSERT_TRUE(naive_predictor->Run(inputs, &naive_outputs));
  ASSERT_EQ(naive_outputs.size(), 1UL);
  inference::CompareTensor(outputs.front(), naive_outputs.front());
}

125 126
TEST(AnalysisPredictor, ZeroCopy) {
  AnalysisConfig config;
127 128
  config.SetModel(FLAGS_dirname);
  config.SwitchUseFeedFetchOps(false);
129
  LOG(INFO) << config.Summary();
S
superjomn 已提交
130
  auto predictor = CreatePaddlePredictor<AnalysisConfig>(config);
131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161

  auto w0 = predictor->GetInputTensor("firstw");
  auto w1 = predictor->GetInputTensor("secondw");
  auto w2 = predictor->GetInputTensor("thirdw");
  auto w3 = predictor->GetInputTensor("forthw");

  w0->Reshape({4, 1});
  w1->Reshape({4, 1});
  w2->Reshape({4, 1});
  w3->Reshape({4, 1});

  auto* w0_data = w0->mutable_data<int64_t>(PaddlePlace::kCPU);
  auto* w1_data = w1->mutable_data<int64_t>(PaddlePlace::kCPU);
  auto* w2_data = w2->mutable_data<int64_t>(PaddlePlace::kCPU);
  auto* w3_data = w3->mutable_data<int64_t>(PaddlePlace::kCPU);

  for (int i = 0; i < 4; i++) {
    w0_data[i] = i;
    w1_data[i] = i;
    w2_data[i] = i;
    w3_data[i] = i;
  }

  predictor->ZeroCopyRun();

  auto out = predictor->GetOutputTensor("fc_1.tmp_2");
  PaddlePlace place;
  int size = 0;
  auto* out_data = out->data<float>(&place, &size);
  LOG(INFO) << "output size: " << size / sizeof(float);
  LOG(INFO) << "output_data: " << out_data;
162
  predictor->TryShrinkMemory();
163 164
}

165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212
TEST(AnalysisPredictor, CollectShapeRangeInfo) {
  AnalysisConfig config;
  config.SetModel(FLAGS_dirname);
  config.SwitchUseFeedFetchOps(false);
  config.EnableUseGpu(100, 0);
  config.CollectShapeRangeInfo(FLAGS_dirname + "/shape_range.pbtxt");
  LOG(INFO) << config.Summary();
  AnalysisConfig config2(config);
  auto predictor = CreatePaddlePredictor<AnalysisConfig>(config2);

  auto w0 = predictor->GetInputTensor("firstw");
  auto w1 = predictor->GetInputTensor("secondw");
  auto w2 = predictor->GetInputTensor("thirdw");
  auto w3 = predictor->GetInputTensor("forthw");

  w0->Reshape({4, 1});
  w1->Reshape({4, 1});
  w2->Reshape({4, 1});
  w3->Reshape({4, 1});

  auto* w0_data = w0->mutable_data<int64_t>(PaddlePlace::kCPU);
  auto* w1_data = w1->mutable_data<int64_t>(PaddlePlace::kCPU);
  auto* w2_data = w2->mutable_data<int64_t>(PaddlePlace::kCPU);
  auto* w3_data = w3->mutable_data<int64_t>(PaddlePlace::kCPU);

  for (int i = 0; i < 4; i++) {
    w0_data[i] = i;
    w1_data[i] = i;
    w2_data[i] = i;
    w3_data[i] = i;
  }

  predictor->ZeroCopyRun();

  auto out = predictor->GetOutputTensor("fc_1.tmp_2");
  PaddlePlace place;
  int size = 0;
  out->data<float>(&place, &size);
  LOG(INFO) << "output size: " << size / sizeof(float);
  // TODO(wilber): check for windows
  // std::map<std::string, std::vector<int32_t>> min_shape;
  // std::map<std::string, std::vector<int32_t>> max_shape;
  // std::map<std::string, std::vector<int32_t>> opt_shape;
  // inference::DeserializeShapeRangeInfo(FLAGS_dirname + "/shape_range.pbtxt",
  //                                     &min_shape, &max_shape, &opt_shape);
  // ASSERT_EQ(min_shape.size(), 14u);
}

213 214
TEST(AnalysisPredictor, Clone) {
  AnalysisConfig config;
215 216 217
  config.SetModel(FLAGS_dirname);
  config.SwitchUseFeedFetchOps(true);
  config.SwitchIrOptim(true);
218
  LOG(INFO) << config.Summary();
219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257

  std::vector<std::unique_ptr<PaddlePredictor>> predictors;
  predictors.emplace_back(CreatePaddlePredictor(config));

  LOG(INFO) << "************** to clone ************************";
  const int num_threads = 3;
  for (int i = 1; i < num_threads; i++) {
    predictors.emplace_back(predictors.front()->Clone());
  }

  auto* root_scope =
      static_cast<AnalysisPredictor*>(predictors[0].get())->scope();
  ASSERT_FALSE(root_scope->kids().empty());
  LOG(INFO) << "***** scope ******\n"
            << framework::GenScopeTreeDebugInfo(root_scope);

  // 2. Dummy Input Data
  int64_t data[4] = {1, 2, 3, 4};
  PaddleTensor tensor;
  tensor.shape = std::vector<int>({4, 1});
  tensor.data.Reset(data, sizeof(data));
  tensor.dtype = PaddleDType::INT64;

  std::vector<PaddleTensor> inputs(4, tensor);
  std::vector<PaddleTensor> outputs;
  predictors[0]->Run(inputs, &outputs);

  LOG(INFO) << "Run with single thread";
  for (int i = 0; i < num_threads; i++) {
    LOG(INFO) << "run predictor " << i;
    ASSERT_TRUE(predictors[i]->Run(inputs, &outputs));
  }

  LOG(INFO) << "Run with multiple threads";
  std::vector<std::thread> threads;
  for (int i = 0; i < num_threads; i++) {
    threads.emplace_back([&predictors, &inputs, i] {
      LOG(INFO) << "thread #" << i << " running";
      std::vector<PaddleTensor> outputs;
Y
Yan Chunwei 已提交
258
      auto predictor = predictors.front()->Clone();
259
      for (int j = 0; j < 10; j++) {
Y
Yan Chunwei 已提交
260
        ASSERT_TRUE(predictor->Run(inputs, &outputs));
261 262 263 264 265 266 267 268 269
      }
    });
  }

  for (auto& t : threads) {
    t.join();
  }
}

S
superjomn 已提交
270 271 272
// This function is not released yet, will fail on some machine.
// TODO(Superjomn) Turn on it latter.
/*
Y
Yan Chunwei 已提交
273 274 275 276
TEST(AnalysisPredictor, memory_optim) {
  AnalysisConfig config(FLAGS_dirname);
  config.DisableGpu();
  config.EnableMemoryOptim(true);
Y
Yan Chunwei 已提交
277
  config.SwitchIrDebug();
Y
Yan Chunwei 已提交
278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294

  auto native_predictor =
      CreatePaddlePredictor<NativeConfig>(config.ToNativeConfig());

  // 2. Dummy Input Data
  int64_t data[4] = {1, 2, 3, 4};
  PaddleTensor tensor;
  tensor.shape = std::vector<int>({4, 1});
  tensor.data.Reset(data, sizeof(data));
  tensor.dtype = PaddleDType::INT64;

  std::vector<PaddleTensor> inputs(4, tensor);
  std::vector<PaddleTensor> output, output1;

  {
    // The first predictor help to cache the memory optimize strategy.
    auto predictor = CreatePaddlePredictor<AnalysisConfig>(config);
295 296
    LOG(INFO) << "serialized program: " << predictor->GetSerializedProgram();
    ASSERT_FALSE(predictor->GetSerializedProgram().empty());
Y
Yan Chunwei 已提交
297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322

    // Run several times to check the parameters are not reused by mistake.
    for (int i = 0; i < 5; i++) {
      ASSERT_TRUE(predictor->Run(inputs, &output));
    }
  }

  {
    output.clear();
    // The second predictor to perform memory optimization.
    config.EnableMemoryOptim(false);
    auto predictor = CreatePaddlePredictor<AnalysisConfig>(config);

    // Run with memory optimization
    ASSERT_TRUE(predictor->Run(inputs, &output));
  }

  // Run native
  ASSERT_TRUE(native_predictor->Run(inputs, &output1));

  LOG(INFO) << "the output " << inference::DescribeTensor(output.front());
  LOG(INFO) << "the native output "
            << inference::DescribeTensor(output1.front());

  inference::CompareResult(output, output1);
}
S
superjomn 已提交
323
*/
Y
Yan Chunwei 已提交
324

325
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
326 327 328 329 330 331 332
TEST(AnalysisPredictor, bf16_gpu_pass_strategy) {
  AnalysisConfig config;
  config.SetModel(FLAGS_dirname);
  config.SwitchIrOptim(true);
  config.EnableUseGpu(100, 0);
  config.EnableMkldnnBfloat16();
#ifdef PADDLE_WITH_MKLDNN
333 334 335 336
  if (platform::MayIUse(platform::cpu_isa_t::avx512_core))
    ASSERT_EQ(config.mkldnn_bfloat16_enabled(), true);
  else
    ASSERT_EQ(config.mkldnn_bfloat16_enabled(), false);
337 338 339 340 341 342 343 344 345 346 347 348
#else
  ASSERT_EQ(config.mkldnn_bfloat16_enabled(), false);
#endif
}
#endif

TEST(AnalysisPredictor, bf16_pass_strategy) {
  std::vector<std::string> passes;
  PassStrategy passStrategy(passes);
  passStrategy.EnableMkldnnBfloat16();
}

349 350 351 352 353 354 355 356 357 358 359
#ifdef PADDLE_WITH_XPU
TEST(AnalysisPredictor, set_xpu_device_id) {
  AnalysisConfig config;
  config.EnableXpu();
  config.SetXpuDeviceId(0);
  ASSERT_EQ(config.xpu_device_id(), 0);
  config.SetXpuDeviceId(1);
  ASSERT_EQ(config.xpu_device_id(), 1);
}
#endif

360
}  // namespace paddle
361 362 363 364

namespace paddle_infer {

TEST(Predictor, Run) {
365 366 367 368 369 370 371 372 373
  auto trt_compile_ver = GetTrtCompileVersion();
  auto trt_runtime_ver = GetTrtRuntimeVersion();
  LOG(INFO) << "trt compile version: " << std::get<0>(trt_compile_ver) << "."
            << std::get<1>(trt_compile_ver) << "."
            << std::get<2>(trt_compile_ver);
  LOG(INFO) << "trt runtime version: " << std::get<0>(trt_runtime_ver) << "."
            << std::get<1>(trt_runtime_ver) << "."
            << std::get<2>(trt_runtime_ver);

374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410
  Config config;
  config.SetModel(FLAGS_dirname);

  auto predictor = CreatePredictor(config);

  auto w0 = predictor->GetInputHandle("firstw");
  auto w1 = predictor->GetInputHandle("secondw");
  auto w2 = predictor->GetInputHandle("thirdw");
  auto w3 = predictor->GetInputHandle("forthw");

  w0->Reshape({4, 1});
  w1->Reshape({4, 1});
  w2->Reshape({4, 1});
  w3->Reshape({4, 1});

  auto* w0_data = w0->mutable_data<int64_t>(PlaceType::kCPU);
  auto* w1_data = w1->mutable_data<int64_t>(PlaceType::kCPU);
  auto* w2_data = w2->mutable_data<int64_t>(PlaceType::kCPU);
  auto* w3_data = w3->mutable_data<int64_t>(PlaceType::kCPU);

  for (int i = 0; i < 4; i++) {
    w0_data[i] = i;
    w1_data[i] = i;
    w2_data[i] = i;
    w3_data[i] = i;
  }

  predictor->Run();

  auto out = predictor->GetOutputHandle("fc_1.tmp_2");
  PlaceType place;
  int size = 0;
  out->data<float>(&place, &size);
  LOG(INFO) << "output size: " << size / sizeof(float);
  predictor->TryShrinkMemory();
}

411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489
TEST(Tensor, CpuShareExternalData) {
  Config config;
  config.SetModel(FLAGS_dirname);

  auto predictor = CreatePredictor(config);

  auto w0 = predictor->GetInputHandle("firstw");
  auto w1 = predictor->GetInputHandle("secondw");
  auto w2 = predictor->GetInputHandle("thirdw");
  auto w3 = predictor->GetInputHandle("forthw");

  std::vector<std::vector<int64_t>> input_data(4, {0, 1, 2, 3});
  w0->ShareExternalData<int64_t>(input_data[0].data(), {4, 1}, PlaceType::kCPU);
  w1->ShareExternalData<int64_t>(input_data[1].data(), {4, 1}, PlaceType::kCPU);
  w2->ShareExternalData<int64_t>(input_data[2].data(), {4, 1}, PlaceType::kCPU);
  w3->ShareExternalData<int64_t>(input_data[3].data(), {4, 1}, PlaceType::kCPU);

  auto out = predictor->GetOutputHandle("fc_1.tmp_2");
  auto out_shape = out->shape();
  std::vector<float> out_data;
  out_data.resize(std::accumulate(out_shape.begin(), out_shape.end(), 1,
                                  std::multiplies<int>()));
  out->ShareExternalData<float>(out_data.data(), out_shape, PlaceType::kCPU);

  predictor->Run();

  PlaceType place;
  int size = 0;
  out->data<float>(&place, &size);
  LOG(INFO) << "output size: " << size / sizeof(float);
  predictor->TryShrinkMemory();
}

#if defined(PADDLE_WITH_CUDA)
TEST(Tensor, GpuShareExternalData) {
  Config config;
  config.SetModel(FLAGS_dirname);
  config.EnableUseGpu(100, 0);

  auto predictor = CreatePredictor(config);

  auto w0 = predictor->GetInputHandle("firstw");
  auto w1 = predictor->GetInputHandle("secondw");
  auto w2 = predictor->GetInputHandle("thirdw");
  auto w3 = predictor->GetInputHandle("forthw");

  std::vector<std::vector<int64_t>> input_data(4, {0, 1, 2, 3});
  std::vector<int64_t*> input_gpu(4, nullptr);

  for (size_t i = 0; i < 4; ++i) {
    cudaMalloc(reinterpret_cast<void**>(&input_gpu[i]), 4 * sizeof(int64_t));
    cudaMemcpy(input_gpu[i], input_data[i].data(), 4 * sizeof(int64_t),
               cudaMemcpyHostToDevice);
  }

  w0->ShareExternalData<int64_t>(input_gpu[0], {4, 1}, PlaceType::kGPU);
  w1->ShareExternalData<int64_t>(input_gpu[1], {4, 1}, PlaceType::kGPU);
  w2->ShareExternalData<int64_t>(input_gpu[2], {4, 1}, PlaceType::kGPU);
  w3->ShareExternalData<int64_t>(input_gpu[3], {4, 1}, PlaceType::kGPU);

  auto out = predictor->GetOutputHandle("fc_1.tmp_2");
  auto out_shape = out->shape();
  float* out_data;
  auto out_size = std::accumulate(out_shape.begin(), out_shape.end(), 1,
                                  std::multiplies<int>()) *
                  sizeof(float);
  cudaMalloc(reinterpret_cast<void**>(out_data), out_size * sizeof(float));
  out->ShareExternalData<float>(out_data, out_shape, PlaceType::kGPU);

  predictor->Run();

  PlaceType place;
  int size = 0;
  out->data<float>(&place, &size);
  LOG(INFO) << "output size: " << size / sizeof(float);
  predictor->TryShrinkMemory();
}
#endif

490
}  // namespace paddle_infer