// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "paddle/fluid/inference/api/analysis_predictor.h" #if defined(PADDLE_WITH_CUDA) #include #endif #include #include #include // NOLINT #include "paddle/fluid/framework/ir/pass.h" #include "paddle/fluid/framework/tensor.h" #include "paddle/fluid/inference/api/helper.h" #include "paddle/fluid/inference/api/paddle_api.h" #include "paddle/fluid/inference/api/paddle_inference_api.h" #include "paddle/fluid/inference/tests/api/tester_helper.h" #include "paddle/fluid/inference/utils/io_utils.h" #include "paddle/fluid/platform/cpu_info.h" DEFINE_string(dirname, "", "dirname to tests."); namespace paddle { TEST(AnalysisPredictor, analysis_off) { AnalysisConfig config; config.SetModel(FLAGS_dirname); config.SwitchIrOptim(false); LOG(INFO) << config.Summary(); LOG(INFO) << "Shape Info collected: " << config.shape_range_info_collected() << ", path: " << config.shape_range_info_path(); auto _predictor = CreatePaddlePredictor(config); auto* predictor = static_cast(_predictor.get()); // Without analysis, the scope_ and sub_scope_ are created by predictor // itself. ASSERT_TRUE(predictor->scope_); ASSERT_TRUE(predictor->sub_scope_); ASSERT_EQ(predictor->scope_->parent(), nullptr); ASSERT_EQ(predictor->sub_scope_->parent(), predictor->scope_.get()); // ir is turned off, so program shouldn't be optimized. LOG(INFO) << "scope parameters " << predictor->scope_->LocalVarNames().size(); // 2. Dummy Input Data int64_t data[4] = {1, 2, 3, 4}; PaddleTensor tensor; tensor.shape = std::vector({4, 1}); tensor.data.Reset(data, sizeof(data)); tensor.dtype = PaddleDType::INT64; std::vector inputs(4, tensor); std::vector outputs; ASSERT_TRUE(predictor->Run(inputs, &outputs)); } #ifndef WIN32 TEST(AnalysisPredictor, lite_nn_adapter_npu) { AnalysisConfig config; config.SetModel(FLAGS_dirname); config.EnableLiteEngine(); config.NNAdapter() .Disable() .Enable() .SetDeviceNames({"huawei_ascend_npu"}) .SetContextProperties("HUAWEI_ASCEND_NPU_SELECTED_DEVICE_IDS=0") .SetModelCacheDir("cache_dirr") .SetSubgraphPartitionConfigPath("") .SetModelCacheBuffers("c1", {'c'}); #ifndef LITE_SUBGRAPH_WITH_NNADAPTER EXPECT_THROW(CreatePaddlePredictor(config), paddle::platform::EnforceNotMet); #endif } #endif TEST(AnalysisPredictor, analysis_on) { AnalysisConfig config; config.SetModel(FLAGS_dirname); config.SwitchIrOptim(true); #if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP) config.EnableUseGpu(100, 0); #else config.DisableGpu(); #endif LOG(INFO) << config.Summary(); auto _predictor = CreatePaddlePredictor(config); auto* predictor = static_cast(_predictor.get()); ASSERT_TRUE(predictor->scope_); ASSERT_TRUE(predictor->sub_scope_); ASSERT_EQ(predictor->scope_->parent(), nullptr); ASSERT_EQ(predictor->sub_scope_->parent(), predictor->scope_.get()); // 2. Dummy Input Data int64_t data[4] = {1, 2, 3, 4}; PaddleTensor tensor; tensor.shape = std::vector({4, 1}); tensor.data.Reset(data, sizeof(data)); tensor.dtype = PaddleDType::INT64; std::vector inputs(4, tensor); std::vector outputs; ASSERT_TRUE(predictor->Run(inputs, &outputs)); // compare with NativePredictor auto naive_predictor = CreatePaddlePredictor(config.ToNativeConfig()); std::vector naive_outputs; ASSERT_TRUE(naive_predictor->Run(inputs, &naive_outputs)); ASSERT_EQ(naive_outputs.size(), 1UL); inference::CompareTensor(outputs.front(), naive_outputs.front()); } TEST(AnalysisPredictor, ZeroCopy) { AnalysisConfig config; config.SetModel(FLAGS_dirname); config.SwitchUseFeedFetchOps(false); LOG(INFO) << config.Summary(); auto predictor = CreatePaddlePredictor(config); auto w0 = predictor->GetInputTensor("firstw"); auto w1 = predictor->GetInputTensor("secondw"); auto w2 = predictor->GetInputTensor("thirdw"); auto w3 = predictor->GetInputTensor("forthw"); w0->Reshape({4, 1}); w1->Reshape({4, 1}); w2->Reshape({4, 1}); w3->Reshape({4, 1}); auto* w0_data = w0->mutable_data(PaddlePlace::kCPU); auto* w1_data = w1->mutable_data(PaddlePlace::kCPU); auto* w2_data = w2->mutable_data(PaddlePlace::kCPU); auto* w3_data = w3->mutable_data(PaddlePlace::kCPU); for (int i = 0; i < 4; i++) { w0_data[i] = i; w1_data[i] = i; w2_data[i] = i; w3_data[i] = i; } predictor->ZeroCopyRun(); auto out = predictor->GetOutputTensor("fc_1.tmp_2"); PaddlePlace place; int size = 0; auto* out_data = out->data(&place, &size); LOG(INFO) << "output size: " << size / sizeof(float); LOG(INFO) << "output_data: " << out_data; predictor->TryShrinkMemory(); } TEST(AnalysisPredictor, CollectShapeRangeInfo) { AnalysisConfig config; config.SetModel(FLAGS_dirname); config.SwitchUseFeedFetchOps(false); config.EnableUseGpu(100, 0); config.CollectShapeRangeInfo(FLAGS_dirname + "/shape_range.pbtxt"); LOG(INFO) << config.Summary(); AnalysisConfig config2(config); auto predictor = CreatePaddlePredictor(config2); auto w0 = predictor->GetInputTensor("firstw"); auto w1 = predictor->GetInputTensor("secondw"); auto w2 = predictor->GetInputTensor("thirdw"); auto w3 = predictor->GetInputTensor("forthw"); w0->Reshape({4, 1}); w1->Reshape({4, 1}); w2->Reshape({4, 1}); w3->Reshape({4, 1}); auto* w0_data = w0->mutable_data(PaddlePlace::kCPU); auto* w1_data = w1->mutable_data(PaddlePlace::kCPU); auto* w2_data = w2->mutable_data(PaddlePlace::kCPU); auto* w3_data = w3->mutable_data(PaddlePlace::kCPU); for (int i = 0; i < 4; i++) { w0_data[i] = i; w1_data[i] = i; w2_data[i] = i; w3_data[i] = i; } predictor->ZeroCopyRun(); auto out = predictor->GetOutputTensor("fc_1.tmp_2"); PaddlePlace place; int size = 0; out->data(&place, &size); LOG(INFO) << "output size: " << size / sizeof(float); // TODO(wilber): check for windows // std::map> min_shape; // std::map> max_shape; // std::map> opt_shape; // inference::DeserializeShapeRangeInfo(FLAGS_dirname + "/shape_range.pbtxt", // &min_shape, &max_shape, &opt_shape); // ASSERT_EQ(min_shape.size(), 14u); } TEST(AnalysisPredictor, Clone) { AnalysisConfig config; config.SetModel(FLAGS_dirname); config.SwitchUseFeedFetchOps(true); config.SwitchIrOptim(true); LOG(INFO) << config.Summary(); std::vector> predictors; predictors.emplace_back(CreatePaddlePredictor(config)); LOG(INFO) << "************** to clone ************************"; const int num_threads = 3; for (int i = 1; i < num_threads; i++) { predictors.emplace_back(predictors.front()->Clone()); } auto* root_scope = static_cast(predictors[0].get())->scope(); ASSERT_FALSE(root_scope->kids().empty()); LOG(INFO) << "***** scope ******\n" << framework::GenScopeTreeDebugInfo(root_scope); // 2. Dummy Input Data int64_t data[4] = {1, 2, 3, 4}; PaddleTensor tensor; tensor.shape = std::vector({4, 1}); tensor.data.Reset(data, sizeof(data)); tensor.dtype = PaddleDType::INT64; std::vector inputs(4, tensor); std::vector outputs; predictors[0]->Run(inputs, &outputs); LOG(INFO) << "Run with single thread"; for (int i = 0; i < num_threads; i++) { LOG(INFO) << "run predictor " << i; ASSERT_TRUE(predictors[i]->Run(inputs, &outputs)); } LOG(INFO) << "Run with multiple threads"; std::vector threads; for (int i = 0; i < num_threads; i++) { threads.emplace_back([&predictors, &inputs, i] { LOG(INFO) << "thread #" << i << " running"; std::vector outputs; auto predictor = predictors.front()->Clone(); for (int j = 0; j < 10; j++) { ASSERT_TRUE(predictor->Run(inputs, &outputs)); } }); } for (auto& t : threads) { t.join(); } } // This function is not released yet, will fail on some machine. // TODO(Superjomn) Turn on it latter. /* TEST(AnalysisPredictor, memory_optim) { AnalysisConfig config(FLAGS_dirname); config.DisableGpu(); config.EnableMemoryOptim(true); config.SwitchIrDebug(); auto native_predictor = CreatePaddlePredictor(config.ToNativeConfig()); // 2. Dummy Input Data int64_t data[4] = {1, 2, 3, 4}; PaddleTensor tensor; tensor.shape = std::vector({4, 1}); tensor.data.Reset(data, sizeof(data)); tensor.dtype = PaddleDType::INT64; std::vector inputs(4, tensor); std::vector output, output1; { // The first predictor help to cache the memory optimize strategy. auto predictor = CreatePaddlePredictor(config); LOG(INFO) << "serialized program: " << predictor->GetSerializedProgram(); ASSERT_FALSE(predictor->GetSerializedProgram().empty()); // Run several times to check the parameters are not reused by mistake. for (int i = 0; i < 5; i++) { ASSERT_TRUE(predictor->Run(inputs, &output)); } } { output.clear(); // The second predictor to perform memory optimization. config.EnableMemoryOptim(false); auto predictor = CreatePaddlePredictor(config); // Run with memory optimization ASSERT_TRUE(predictor->Run(inputs, &output)); } // Run native ASSERT_TRUE(native_predictor->Run(inputs, &output1)); LOG(INFO) << "the output " << inference::DescribeTensor(output.front()); LOG(INFO) << "the native output " << inference::DescribeTensor(output1.front()); inference::CompareResult(output, output1); } */ #if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP) TEST(AnalysisPredictor, bf16_gpu_pass_strategy) { AnalysisConfig config; config.SetModel(FLAGS_dirname); config.SwitchIrOptim(true); config.EnableUseGpu(100, 0); config.EnableMkldnnBfloat16(); #ifdef PADDLE_WITH_MKLDNN if (platform::MayIUse(platform::cpu_isa_t::avx512_core)) ASSERT_EQ(config.mkldnn_bfloat16_enabled(), true); else ASSERT_EQ(config.mkldnn_bfloat16_enabled(), false); #else ASSERT_EQ(config.mkldnn_bfloat16_enabled(), false); #endif } #endif TEST(AnalysisPredictor, bf16_pass_strategy) { std::vector passes; PassStrategy passStrategy(passes); passStrategy.EnableMkldnnBfloat16(); } #ifdef PADDLE_WITH_XPU TEST(AnalysisPredictor, set_xpu_device_id) { AnalysisConfig config; config.EnableXpu(); config.SetXpuDeviceId(0); ASSERT_EQ(config.xpu_device_id(), 0); config.SetXpuDeviceId(1); ASSERT_EQ(config.xpu_device_id(), 1); } #endif } // namespace paddle namespace paddle_infer { TEST(Predictor, Run) { auto trt_compile_ver = GetTrtCompileVersion(); auto trt_runtime_ver = GetTrtRuntimeVersion(); LOG(INFO) << "trt compile version: " << std::get<0>(trt_compile_ver) << "." << std::get<1>(trt_compile_ver) << "." << std::get<2>(trt_compile_ver); LOG(INFO) << "trt runtime version: " << std::get<0>(trt_runtime_ver) << "." << std::get<1>(trt_runtime_ver) << "." << std::get<2>(trt_runtime_ver); Config config; config.SetModel(FLAGS_dirname); auto predictor = CreatePredictor(config); auto w0 = predictor->GetInputHandle("firstw"); auto w1 = predictor->GetInputHandle("secondw"); auto w2 = predictor->GetInputHandle("thirdw"); auto w3 = predictor->GetInputHandle("forthw"); w0->Reshape({4, 1}); w1->Reshape({4, 1}); w2->Reshape({4, 1}); w3->Reshape({4, 1}); auto* w0_data = w0->mutable_data(PlaceType::kCPU); auto* w1_data = w1->mutable_data(PlaceType::kCPU); auto* w2_data = w2->mutable_data(PlaceType::kCPU); auto* w3_data = w3->mutable_data(PlaceType::kCPU); for (int i = 0; i < 4; i++) { w0_data[i] = i; w1_data[i] = i; w2_data[i] = i; w3_data[i] = i; } predictor->Run(); auto out = predictor->GetOutputHandle("fc_1.tmp_2"); PlaceType place; int size = 0; out->data(&place, &size); LOG(INFO) << "output size: " << size / sizeof(float); predictor->TryShrinkMemory(); } TEST(Tensor, CpuShareExternalData) { Config config; config.SetModel(FLAGS_dirname); auto predictor = CreatePredictor(config); auto w0 = predictor->GetInputHandle("firstw"); auto w1 = predictor->GetInputHandle("secondw"); auto w2 = predictor->GetInputHandle("thirdw"); auto w3 = predictor->GetInputHandle("forthw"); std::vector> input_data(4, {0, 1, 2, 3}); w0->ShareExternalData(input_data[0].data(), {4, 1}, PlaceType::kCPU); w1->ShareExternalData(input_data[1].data(), {4, 1}, PlaceType::kCPU); w2->ShareExternalData(input_data[2].data(), {4, 1}, PlaceType::kCPU); w3->ShareExternalData(input_data[3].data(), {4, 1}, PlaceType::kCPU); auto out = predictor->GetOutputHandle("fc_1.tmp_2"); auto out_shape = out->shape(); std::vector out_data; out_data.resize(std::accumulate(out_shape.begin(), out_shape.end(), 1, std::multiplies())); out->ShareExternalData(out_data.data(), out_shape, PlaceType::kCPU); predictor->Run(); PlaceType place; int size = 0; out->data(&place, &size); LOG(INFO) << "output size: " << size / sizeof(float); predictor->TryShrinkMemory(); } #if defined(PADDLE_WITH_CUDA) TEST(Tensor, GpuShareExternalData) { Config config; config.SetModel(FLAGS_dirname); config.EnableUseGpu(100, 0); auto predictor = CreatePredictor(config); auto w0 = predictor->GetInputHandle("firstw"); auto w1 = predictor->GetInputHandle("secondw"); auto w2 = predictor->GetInputHandle("thirdw"); auto w3 = predictor->GetInputHandle("forthw"); std::vector> input_data(4, {0, 1, 2, 3}); std::vector input_gpu(4, nullptr); for (size_t i = 0; i < 4; ++i) { cudaMalloc(reinterpret_cast(&input_gpu[i]), 4 * sizeof(int64_t)); cudaMemcpy(input_gpu[i], input_data[i].data(), 4 * sizeof(int64_t), cudaMemcpyHostToDevice); } w0->ShareExternalData(input_gpu[0], {4, 1}, PlaceType::kGPU); w1->ShareExternalData(input_gpu[1], {4, 1}, PlaceType::kGPU); w2->ShareExternalData(input_gpu[2], {4, 1}, PlaceType::kGPU); w3->ShareExternalData(input_gpu[3], {4, 1}, PlaceType::kGPU); auto out = predictor->GetOutputHandle("fc_1.tmp_2"); auto out_shape = out->shape(); float* out_data; auto out_size = std::accumulate(out_shape.begin(), out_shape.end(), 1, std::multiplies()) * sizeof(float); cudaMalloc(reinterpret_cast(out_data), out_size * sizeof(float)); out->ShareExternalData(out_data, out_shape, PlaceType::kGPU); predictor->Run(); PlaceType place; int size = 0; out->data(&place, &size); LOG(INFO) << "output size: " << size / sizeof(float); predictor->TryShrinkMemory(); } #endif } // namespace paddle_infer