/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ #pragma once #include #include #include #include #include #include "paddle/fluid/framework/lod_tensor.h" #include "paddle/fluid/inference/io.h" #include "paddle/fluid/platform/port.h" #include "paddle/fluid/platform/profiler.h" DECLARE_bool(use_mkldnn); template void SetupTensor(paddle::framework::LoDTensor* input, paddle::framework::DDim dims, T lower, T upper) { static unsigned int seed = 100; std::mt19937 rng(seed++); std::uniform_real_distribution uniform_dist(0, 1); T* input_ptr = input->mutable_data(dims, paddle::platform::CPUPlace()); for (int i = 0; i < input->numel(); ++i) { input_ptr[i] = static_cast(uniform_dist(rng) * (upper - lower) + lower); } } template void SetupTensor(paddle::framework::LoDTensor* input, paddle::framework::DDim dims, const std::vector& data) { CHECK_EQ(paddle::framework::product(dims), static_cast(data.size())); T* input_ptr = input->mutable_data(dims, paddle::platform::CPUPlace()); memcpy(input_ptr, data.data(), input->numel() * sizeof(T)); } template void SetupLoDTensor(paddle::framework::LoDTensor* input, const paddle::framework::LoD& lod, T lower, T upper) { input->set_lod(lod); int dim = lod[0][lod[0].size() - 1]; SetupTensor(input, {dim, 1}, lower, upper); } template void SetupLoDTensor(paddle::framework::LoDTensor* input, paddle::framework::DDim dims, const paddle::framework::LoD lod, const std::vector& data) { const size_t level = lod.size() - 1; CHECK_EQ(dims[0], static_cast((lod[level]).back())); input->set_lod(lod); SetupTensor(input, dims, data); } template void CheckError(const paddle::framework::LoDTensor& output1, const paddle::framework::LoDTensor& output2) { // Check lod information EXPECT_EQ(output1.lod(), output2.lod()); EXPECT_EQ(output1.dims(), output2.dims()); EXPECT_EQ(output1.numel(), output2.numel()); T err = static_cast(0); if (typeid(T) == typeid(float)) { err = 1E-3; } else if (typeid(T) == typeid(double)) { err = 1E-6; } else { err = 0; } size_t count = 0; for (int64_t i = 0; i < output1.numel(); ++i) { if (fabs(output1.data()[i] - output2.data()[i]) > err) { count++; } } EXPECT_EQ(count, 0U) << "There are " << count << " different elements."; } std::unique_ptr InitProgram( paddle::framework::Executor* executor, paddle::framework::Scope* scope, const std::string& dirname, const bool is_combined = false, const std::string& prog_filename = "__model_combined__", const std::string& param_filename = "__params_combined__") { std::unique_ptr inference_program; if (is_combined) { // All parameters are saved in a single file. // Hard-coding the file names of program and parameters in unittest. // The file names should be consistent with that used in Python API // `fluid.io.save_inference_model`. inference_program = paddle::inference::Load(executor, scope, dirname + "/" + prog_filename, dirname + "/" + param_filename); } else { // Parameters are saved in separate files sited in the specified // `dirname`. inference_program = paddle::inference::Load(executor, scope, dirname); } return inference_program; } std::vector> GetFeedTargetShapes( const std::string& dirname, const bool is_combined = false, const std::string& prog_filename = "__model_combined__", const std::string& param_filename = "__params_combined__") { auto place = paddle::platform::CPUPlace(); auto executor = paddle::framework::Executor(place); auto* scope = new paddle::framework::Scope(); auto inference_program = InitProgram(&executor, scope, dirname, is_combined, prog_filename, param_filename); auto& global_block = inference_program->Block(0); const std::vector& feed_target_names = inference_program->GetFeedTargetNames(); std::vector> feed_target_shapes; for (size_t i = 0; i < feed_target_names.size(); ++i) { auto* var = global_block.FindVar(feed_target_names[i]); std::vector var_shape = var->GetShape(); feed_target_shapes.push_back(var_shape); } delete scope; return feed_target_shapes; } template void TestInference(const std::string& dirname, const std::vector& cpu_feeds, const std::vector& cpu_fetchs, const int repeat = 1, const bool is_combined = false) { // 1. Define place, executor, scope auto place = Place(); auto executor = paddle::framework::Executor(place); auto* scope = new paddle::framework::Scope(); // Profile the performance paddle::platform::ProfilerState state; if (paddle::platform::is_cpu_place(place)) { state = paddle::platform::ProfilerState::kCPU; } else { #ifdef PADDLE_WITH_CUDA state = paddle::platform::ProfilerState::kAll; // The default device_id of paddle::platform::CUDAPlace is 0. // Users can get the device_id using: // int device_id = place.GetDeviceId(); paddle::platform::SetDeviceId(0); #else PADDLE_THROW("'CUDAPlace' is not supported in CPU only device."); #endif } // 2. Initialize the inference_program and load parameters std::unique_ptr inference_program; // Enable the profiler paddle::platform::EnableProfiler(state); { paddle::platform::RecordEvent record_event("init_program"); inference_program = InitProgram(&executor, scope, dirname, is_combined); } // Disable the profiler and print the timing information paddle::platform::DisableProfiler(paddle::platform::EventSortingKey::kDefault, "load_program_profiler"); paddle::platform::ResetProfiler(); // 3. Get the feed_target_names and fetch_target_names const std::vector& feed_target_names = inference_program->GetFeedTargetNames(); const std::vector& fetch_target_names = inference_program->GetFetchTargetNames(); // 4. Prepare inputs: set up maps for feed targets std::map feed_targets; for (size_t i = 0; i < feed_target_names.size(); ++i) { // Please make sure that cpu_feeds[i] is right for feed_target_names[i] feed_targets[feed_target_names[i]] = cpu_feeds[i]; } // 5. Define Tensor to get the outputs: set up maps for fetch targets std::map fetch_targets; for (size_t i = 0; i < fetch_target_names.size(); ++i) { fetch_targets[fetch_target_names[i]] = cpu_fetchs[i]; } // 6. If export Flags_use_mkldnn=True, use mkldnn related ops. if (FLAGS_use_mkldnn) executor.EnableMKLDNN(*inference_program); // 7. Run the inference program { if (!CreateVars) { // If users don't want to create and destroy variables every time they // run, they need to set `create_vars` to false and manually call // `CreateVariables` before running. executor.CreateVariables(*inference_program, scope, 0); } // Ignore the profiling results of the first run std::unique_ptr ctx; bool CreateLocalScope = CreateVars; if (PrepareContext) { ctx = executor.Prepare(*inference_program, 0); executor.RunPreparedContext(ctx.get(), scope, &feed_targets, &fetch_targets, CreateLocalScope, CreateVars); } else { executor.Run(*inference_program, scope, &feed_targets, &fetch_targets, CreateLocalScope, CreateVars); } // Enable the profiler paddle::platform::EnableProfiler(state); // Run repeat times to profile the performance for (int i = 0; i < repeat; ++i) { paddle::platform::RecordEvent record_event("run_inference"); if (PrepareContext) { // Note: if you change the inference_program, you need to call // executor.Prepare() again to get a new ExecutorPrepareContext. executor.RunPreparedContext(ctx.get(), scope, &feed_targets, &fetch_targets, CreateLocalScope, CreateVars); } else { executor.Run(*inference_program, scope, &feed_targets, &fetch_targets, CreateLocalScope, CreateVars); } } // Disable the profiler and print the timing information paddle::platform::DisableProfiler( paddle::platform::EventSortingKey::kDefault, "run_inference_profiler"); paddle::platform::ResetProfiler(); } delete scope; }