sequence_pad_op.cc 11.4 KB
Newer Older
Y
yangyaming 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

W
Wu Yi 已提交
15
#include "paddle/fluid/operators/sequence_ops/sequence_pad_op.h"
16

17 18
#include <memory>
#include <string>
Y
yangyaming 已提交
19 20 21 22 23 24 25 26

namespace paddle {
namespace operators {

class SequencePadOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

27
 protected:
Y
yangyaming 已提交
28
  void InferShape(framework::InferShapeContext* ctx) const override {
29 30
    PADDLE_ENFORCE_EQ(ctx->HasInput("X"),
                      true,
31 32 33
                      platform::errors::NotFound(
                          "Input(X) of SequencePadOp should not be null."));
    PADDLE_ENFORCE_EQ(
34 35
        ctx->HasInput("PadValue"),
        true,
36 37
        platform::errors::NotFound(
            "Input(PadValue) of SequencePadOp should not be null."));
38 39
    PADDLE_ENFORCE_EQ(ctx->HasOutput("Out"),
                      true,
40 41 42
                      platform::errors::NotFound(
                          "Output(Out) of SequencePadOp should not be null."));
    PADDLE_ENFORCE_EQ(
43 44
        ctx->HasOutput("Length"),
        true,
45 46
        platform::errors::NotFound(
            "Output(Length) of SequencePadOp should not be null."));
Y
yangyaming 已提交
47 48

    auto x_dims = ctx->GetInputDim("X");
49 50
    PADDLE_ENFORCE_GE(x_dims.size(),
                      2,
51 52 53 54
                      platform::errors::InvalidArgument(
                          "The rank of SequencePadOp Input(X) can't be less "
                          "than 2. But the rank we received is %d",
                          x_dims.size()));
55
    auto time_step_dims = phi::slice_ddim(x_dims, 1, x_dims.size());
56
    auto pad_value_dims = ctx->GetInputDim("PadValue");
57
    PADDLE_ENFORCE_EQ(
58
        pad_value_dims == phi::make_ddim({1}) ||
59 60 61 62 63
            pad_value_dims == time_step_dims,
        true,
        platform::errors::InvalidArgument(
            "The SequencePadOp Input(PadValue) must be a scalar or a tensor "
            "whose shape equals to time steps in sequences"));
Y
yangyaming 已提交
64

F
fengjiayi 已提交
65
    int out_dim_0 = -1;
Y
yangyaming 已提交
66

67
    int padded_length = ctx->Attrs().Get<int>("padded_length");
Y
yangyaming 已提交
68
    if (ctx->IsRuntime()) {
69
      // run time
Y
yangyaming 已提交
70
      framework::Variable* x_var =
R
Ruibiao Chen 已提交
71
          PADDLE_GET(framework::Variable*, ctx->GetInputVarPtrs("X")[0]);
72
      const auto& x_lod = x_var->Get<LoDTensor>().lod();
73 74
      PADDLE_ENFORCE_EQ(x_lod.empty(),
                        false,
75 76
                        platform::errors::NotFound(
                            "The SequencePadOp Input(X) must hold lod info."));
77
      const auto& x_lod_0 = x_lod[0];
78
      PADDLE_ENFORCE_GE(
79 80
          x_lod_0.size(),
          2,
81 82 83 84
          platform::errors::InvalidArgument(
              "The size of SequencePadOp Input(X)'s lod info can't be less "
              "than 2. But the size we received is %d",
              x_lod_0.size()));
85 86
      PADDLE_ENFORCE_EQ(x_dims[0],
                        static_cast<int64_t>(x_lod_0.back()),
87 88 89 90 91
                        platform::errors::InvalidArgument(
                            "The SequencePadOp Input(X)'s lod info mismatches "
                            "the actual tensor shape. The 1st dimension of "
                            "Input(X)'s lod info is %d, the 1st dimension of "
                            "actual tensor shape is %d",
92 93
                            x_dims[0],
                            static_cast<int64_t>(x_lod_0.back())));
94 95 96 97 98

      int seq_num = x_lod_0.size() - 1;
      int max_seq_len = math::MaximumSequenceLength(x_lod_0);
      if (padded_length == -1) {
        padded_length = max_seq_len;
Y
yangyaming 已提交
99
      }
100
      PADDLE_ENFORCE_GE(
101 102
          padded_length,
          max_seq_len,
103 104 105 106 107 108
          platform::errors::InvalidArgument(
              "The SequencePadOp Attr(padded_length) should be greater than or "
              "equal to the "
              "length of the longest original sequence. But the padded_length "
              "we received is %d, the length of the longest original sequence "
              "is %d",
109 110
              padded_length,
              max_seq_len));
F
fengjiayi 已提交
111
      out_dim_0 = seq_num;
Y
yangyaming 已提交
112
    } else {
113
      // compile time
114 115 116
      if (padded_length == -1) {
        padded_length = 1;
      }
117
      PADDLE_ENFORCE_GT(
118 119
          ctx->GetLoDLevel("X"),
          0,
120 121 122 123
          platform::errors::InvalidArgument(
              "The LoD level of SequencePadOp Input(X) should be "
              "larger than 0. But the LoD level we received is %d",
              ctx->GetLoDLevel("X")));
Y
yangyaming 已提交
124 125
    }

126
    std::vector<int> out_dims_vec{out_dim_0, padded_length};
127
    std::vector<int> len_dims_vec{out_dim_0};
128
    auto time_step_dims_vec = phi::vectorize<int>(time_step_dims);
129 130
    out_dims_vec.insert(out_dims_vec.end(),
                        time_step_dims_vec.begin(),
F
fengjiayi 已提交
131
                        time_step_dims_vec.end());
132 133
    ctx->SetOutputDim("Out", phi::make_ddim(out_dims_vec));
    ctx->SetOutputDim("Length", phi::make_ddim(len_dims_vec));
134 135 136 137 138
  }

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
139
    auto data_type = OperatorWithKernel::IndicateVarDataType(ctx, "X");
140
    return framework::OpKernelType(data_type, ctx.device_context());
Y
yangyaming 已提交
141 142 143 144 145
  }
};

class SequencePadOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
146
  void Make() override {
Y
yangyaming 已提交
147 148
    AddInput("X",
             "(LoDTensor, default LoDTensor<float>) Input variable which "
149 150 151 152 153 154 155 156 157
             "should contain lod information.");
    AddInput("PadValue",
             "(LoDTensor), this Tensor holds values that will be fill into "
             "padded steps. It can be a scalar or a tensor whose shape equals "
             "to time steps in sequences. If it's a scalar, it will be "
             "automatically broadcasted to the shape of time step.");
    AddOutput(
        "Out",
        "(LoDTensor) The output vairable, which contains padded sequences.");
158 159 160 161
    AddOutput(
        "Length",
        "(LoDTensor) The output vairable, which contains the actual length of "
        "sequences before padding.");
162 163
    AddAttr<int>(
        "padded_length",
T
tianshuo78520a 已提交
164
        "The length of padded sequences. It can be set to -1 or "
165 166 167 168 169
        "any positive int. When it is -1, all sequences will be padded up to "
        "the length of the longest one among them; when it a certain positive "
        "value, it must be greater than the length of the longest original "
        "sequence.")
        .SetDefault(-1);
Y
yangyaming 已提交
170
    AddComment(R"DOC(
F
fengjiayi 已提交
171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187
      Sequence Pad Operator

      This operator pads sequences in a same batch to a consistent length. 
      The length is specified by attribute 'padded_length'. New elements, 
      whose values are specified by input 'PadValue', will be appended to 
      the end of each sequence, to make their final lengths consistent.

      Following are cases to better explain how this works:

      Case 1:

      Given a 1-level LoDTensor input(X):
          X.lod = [[0, 2,       5]]
          X.data = [a, b, c, d, e]
      and Input(PadValue):
          PadValue.data = [0]
      and attribite 'padded_length' = 4,
F
fengjiayi 已提交
188 189 190
      then we get LoDTensor:
          Out.data = [[a, b, 0, 0], 
                      [c, d, e, 0]]
191
          Length.data = [2, 3]
F
fengjiayi 已提交
192 193 194 195 196 197 198 199 200 201
      
      Case 2:

      Given a 1-level LoDTensor input(X):
          X.lod = [[0,               2,                           5]]
          X.data = [[a1, a2], [b1, b2], [c1, c2], [d1, d2], [e1, e2]]
      and Input(PadValue):
          PadValue.data = [0]
      and attribite 'padded_length' = -1, which mean using the length 
      of longest input sequence(3 in this case),
F
fengjiayi 已提交
202 203 204
      then we get LoDTensor:
          Out.data = [[[a1, a2], [b1, b2], [0, 0]], 
                      [[c1, c2], [d1, d2], [e1, e2]]]
205
          Length.data = [2, 3]
206
 
F
fengjiayi 已提交
207 208 209 210 211 212 213 214 215
      Case 3:

      Given a 1-level LoDTensor input(X):
          X.lod = [[0,               2,                           5]]
          X.data = [[a1, a2], [b1, b2], [c1, c2], [d1, d2], [e1, e2]]
      and Input(PadValue):
          PadValue.data = [p1, p2]
      and attribite 'padded_length' = -1, which mean using the length 
      of longest input sequence(3 in this case),
F
fengjiayi 已提交
216 217 218
      then we get LoDTensor:
          Out.data = [[[a1, a2], [b1, b2], [p1, p2]], 
                      [[c1, c2], [d1, d2], [e1, e2]]]
219
          Length.data = [2, 3]
Y
yangyaming 已提交
220 221 222 223 224 225 226 227 228 229

    )DOC");
  }
};

class SequencePadGradOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext* ctx) const override {
230 231
    PADDLE_ENFORCE_EQ(ctx->HasInput("X"),
                      true,
232 233
                      platform::errors::NotFound(
                          "Input(X) of SequencePadGradOp should not be null."));
234
    PADDLE_ENFORCE_EQ(
235 236
        ctx->HasInput(framework::GradVarName("Out")),
        true,
237 238
        platform::errors::NotFound(
            "Input(Out@GRAD) of SequencePadGradOp should not be null."));
Y
yangyaming 已提交
239 240 241 242 243 244

    if (ctx->HasOutput(framework::GradVarName("X"))) {
      ctx->SetOutputDim(framework::GradVarName("X"), ctx->GetInputDim("X"));
      ctx->ShareLoD("X", /*->*/ framework::GradVarName("X"));
    }
  }
245 246 247 248

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
249 250
    auto data_type = OperatorWithKernel::IndicateVarDataType(
        ctx, framework::GradVarName("Out"));
251 252
    return framework::OpKernelType(data_type, ctx.device_context());
  }
Y
yangyaming 已提交
253 254
};

H
hong 已提交
255 256
template <typename T>
class SequencePadGradOpMaker : public framework::SingleGradOpMaker<T> {
257
 public:
H
hong 已提交
258
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;
259 260

 protected:
261
  void Apply(GradOpPtr<T> op) const override {
262
    op->SetType("sequence_pad_grad");
H
hong 已提交
263 264 265 266
    op->SetAttrMap(this->Attrs());
    op->SetInput("X", this->Input("X"));
    op->SetInput(framework::GradVarName("Out"), this->OutputGrad("Out"));
    op->SetOutput(framework::GradVarName("X"), this->InputGrad("X"));
267 268 269
  }
};

270
DECLARE_NO_NEED_BUFFER_VARS_INFERER(SequencePadGradOpNoNeedBufferVarsInferer,
271
                                    "X");
272

Y
yangyaming 已提交
273 274 275 276
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
277 278 279
REGISTER_OPERATOR(sequence_pad,
                  ops::SequencePadOp,
                  ops::SequencePadOpMaker,
H
hong 已提交
280 281
                  ops::SequencePadGradOpMaker<paddle::framework::OpDesc>,
                  ops::SequencePadGradOpMaker<paddle::imperative::OpBase>);
282 283
REGISTER_OPERATOR(sequence_pad_grad,
                  ops::SequencePadGradOp,
284
                  ops::SequencePadGradOpNoNeedBufferVarsInferer);
L
Leo Chen 已提交
285 286 287 288 289 290 291 292 293 294
REGISTER_OP_CPU_KERNEL(sequence_pad,
                       ops::SequencePadOpKernel<phi::CPUContext, float>,
                       ops::SequencePadOpKernel<phi::CPUContext, double>,
                       ops::SequencePadOpKernel<phi::CPUContext, int>,
                       ops::SequencePadOpKernel<phi::CPUContext, int64_t>);
REGISTER_OP_CPU_KERNEL(sequence_pad_grad,
                       ops::SequencePadGradOpKernel<phi::CPUContext, float>,
                       ops::SequencePadGradOpKernel<phi::CPUContext, double>,
                       ops::SequencePadGradOpKernel<phi::CPUContext, int>,
                       ops::SequencePadGradOpKernel<phi::CPUContext, int64_t>);