sequence_pad_op.cc 11.1 KB
Newer Older
Y
yangyaming 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

W
Wu Yi 已提交
15
#include "paddle/fluid/operators/sequence_ops/sequence_pad_op.h"
16

17 18
#include <memory>
#include <string>
Y
yangyaming 已提交
19 20 21 22 23 24 25 26

namespace paddle {
namespace operators {

class SequencePadOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

27
 protected:
Y
yangyaming 已提交
28
  void InferShape(framework::InferShapeContext* ctx) const override {
29
    PADDLE_ENFORCE_EQ(ctx->HasInput("X"), true,
30 31 32 33 34 35
                      platform::errors::NotFound(
                          "Input(X) of SequencePadOp should not be null."));
    PADDLE_ENFORCE_EQ(
        ctx->HasInput("PadValue"), true,
        platform::errors::NotFound(
            "Input(PadValue) of SequencePadOp should not be null."));
36
    PADDLE_ENFORCE_EQ(ctx->HasOutput("Out"), true,
37 38 39 40 41 42
                      platform::errors::NotFound(
                          "Output(Out) of SequencePadOp should not be null."));
    PADDLE_ENFORCE_EQ(
        ctx->HasOutput("Length"), true,
        platform::errors::NotFound(
            "Output(Length) of SequencePadOp should not be null."));
Y
yangyaming 已提交
43 44

    auto x_dims = ctx->GetInputDim("X");
45
    PADDLE_ENFORCE_GE(x_dims.size(), 2,
46 47 48 49
                      platform::errors::InvalidArgument(
                          "The rank of SequencePadOp Input(X) can't be less "
                          "than 2. But the rank we received is %d",
                          x_dims.size()));
50
    auto time_step_dims = phi::slice_ddim(x_dims, 1, x_dims.size());
51
    auto pad_value_dims = ctx->GetInputDim("PadValue");
52
    PADDLE_ENFORCE_EQ(
53
        pad_value_dims == phi::make_ddim({1}) ||
54 55 56 57 58
            pad_value_dims == time_step_dims,
        true,
        platform::errors::InvalidArgument(
            "The SequencePadOp Input(PadValue) must be a scalar or a tensor "
            "whose shape equals to time steps in sequences"));
Y
yangyaming 已提交
59

F
fengjiayi 已提交
60
    int out_dim_0 = -1;
Y
yangyaming 已提交
61

62
    int padded_length = ctx->Attrs().Get<int>("padded_length");
Y
yangyaming 已提交
63
    if (ctx->IsRuntime()) {
64
      // run time
Y
yangyaming 已提交
65
      framework::Variable* x_var =
66
          BOOST_GET(framework::Variable*, ctx->GetInputVarPtrs("X")[0]);
67
      const auto& x_lod = x_var->Get<LoDTensor>().lod();
68
      PADDLE_ENFORCE_EQ(x_lod.empty(), false,
69 70
                        platform::errors::NotFound(
                            "The SequencePadOp Input(X) must hold lod info."));
71
      const auto& x_lod_0 = x_lod[0];
72 73 74 75 76 77 78 79 80 81 82 83 84
      PADDLE_ENFORCE_GE(
          x_lod_0.size(), 2,
          platform::errors::InvalidArgument(
              "The size of SequencePadOp Input(X)'s lod info can't be less "
              "than 2. But the size we received is %d",
              x_lod_0.size()));
      PADDLE_ENFORCE_EQ(x_dims[0], static_cast<int64_t>(x_lod_0.back()),
                        platform::errors::InvalidArgument(
                            "The SequencePadOp Input(X)'s lod info mismatches "
                            "the actual tensor shape. The 1st dimension of "
                            "Input(X)'s lod info is %d, the 1st dimension of "
                            "actual tensor shape is %d",
                            x_dims[0], static_cast<int64_t>(x_lod_0.back())));
85 86 87 88 89

      int seq_num = x_lod_0.size() - 1;
      int max_seq_len = math::MaximumSequenceLength(x_lod_0);
      if (padded_length == -1) {
        padded_length = max_seq_len;
Y
yangyaming 已提交
90
      }
91 92 93 94 95 96 97 98 99
      PADDLE_ENFORCE_GE(
          padded_length, max_seq_len,
          platform::errors::InvalidArgument(
              "The SequencePadOp Attr(padded_length) should be greater than or "
              "equal to the "
              "length of the longest original sequence. But the padded_length "
              "we received is %d, the length of the longest original sequence "
              "is %d",
              padded_length, max_seq_len));
F
fengjiayi 已提交
100
      out_dim_0 = seq_num;
Y
yangyaming 已提交
101
    } else {
102
      // compile time
103 104 105
      if (padded_length == -1) {
        padded_length = 1;
      }
106 107
      PADDLE_ENFORCE_GT(
          ctx->GetLoDLevel("X"), 0,
108 109 110 111
          platform::errors::InvalidArgument(
              "The LoD level of SequencePadOp Input(X) should be "
              "larger than 0. But the LoD level we received is %d",
              ctx->GetLoDLevel("X")));
Y
yangyaming 已提交
112 113
    }

114
    std::vector<int> out_dims_vec{out_dim_0, padded_length};
115
    std::vector<int> len_dims_vec{out_dim_0};
116
    auto time_step_dims_vec = phi::vectorize<int>(time_step_dims);
F
fengjiayi 已提交
117 118
    out_dims_vec.insert(out_dims_vec.end(), time_step_dims_vec.begin(),
                        time_step_dims_vec.end());
119 120
    ctx->SetOutputDim("Out", phi::make_ddim(out_dims_vec));
    ctx->SetOutputDim("Length", phi::make_ddim(len_dims_vec));
121 122 123 124 125
  }

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
126
    auto data_type = OperatorWithKernel::IndicateVarDataType(ctx, "X");
127
    return framework::OpKernelType(data_type, ctx.device_context());
Y
yangyaming 已提交
128 129 130 131 132
  }
};

class SequencePadOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
133
  void Make() override {
Y
yangyaming 已提交
134 135
    AddInput("X",
             "(LoDTensor, default LoDTensor<float>) Input variable which "
136 137 138 139 140 141 142 143 144
             "should contain lod information.");
    AddInput("PadValue",
             "(LoDTensor), this Tensor holds values that will be fill into "
             "padded steps. It can be a scalar or a tensor whose shape equals "
             "to time steps in sequences. If it's a scalar, it will be "
             "automatically broadcasted to the shape of time step.");
    AddOutput(
        "Out",
        "(LoDTensor) The output vairable, which contains padded sequences.");
145 146 147 148
    AddOutput(
        "Length",
        "(LoDTensor) The output vairable, which contains the actual length of "
        "sequences before padding.");
149 150
    AddAttr<int>(
        "padded_length",
T
tianshuo78520a 已提交
151
        "The length of padded sequences. It can be set to -1 or "
152 153 154 155 156
        "any positive int. When it is -1, all sequences will be padded up to "
        "the length of the longest one among them; when it a certain positive "
        "value, it must be greater than the length of the longest original "
        "sequence.")
        .SetDefault(-1);
Y
yangyaming 已提交
157
    AddComment(R"DOC(
F
fengjiayi 已提交
158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174
      Sequence Pad Operator

      This operator pads sequences in a same batch to a consistent length. 
      The length is specified by attribute 'padded_length'. New elements, 
      whose values are specified by input 'PadValue', will be appended to 
      the end of each sequence, to make their final lengths consistent.

      Following are cases to better explain how this works:

      Case 1:

      Given a 1-level LoDTensor input(X):
          X.lod = [[0, 2,       5]]
          X.data = [a, b, c, d, e]
      and Input(PadValue):
          PadValue.data = [0]
      and attribite 'padded_length' = 4,
F
fengjiayi 已提交
175 176 177
      then we get LoDTensor:
          Out.data = [[a, b, 0, 0], 
                      [c, d, e, 0]]
178
          Length.data = [2, 3]
F
fengjiayi 已提交
179 180 181 182 183 184 185 186 187 188
      
      Case 2:

      Given a 1-level LoDTensor input(X):
          X.lod = [[0,               2,                           5]]
          X.data = [[a1, a2], [b1, b2], [c1, c2], [d1, d2], [e1, e2]]
      and Input(PadValue):
          PadValue.data = [0]
      and attribite 'padded_length' = -1, which mean using the length 
      of longest input sequence(3 in this case),
F
fengjiayi 已提交
189 190 191
      then we get LoDTensor:
          Out.data = [[[a1, a2], [b1, b2], [0, 0]], 
                      [[c1, c2], [d1, d2], [e1, e2]]]
192
          Length.data = [2, 3]
193
 
F
fengjiayi 已提交
194 195 196 197 198 199 200 201 202
      Case 3:

      Given a 1-level LoDTensor input(X):
          X.lod = [[0,               2,                           5]]
          X.data = [[a1, a2], [b1, b2], [c1, c2], [d1, d2], [e1, e2]]
      and Input(PadValue):
          PadValue.data = [p1, p2]
      and attribite 'padded_length' = -1, which mean using the length 
      of longest input sequence(3 in this case),
F
fengjiayi 已提交
203 204 205
      then we get LoDTensor:
          Out.data = [[[a1, a2], [b1, b2], [p1, p2]], 
                      [[c1, c2], [d1, d2], [e1, e2]]]
206
          Length.data = [2, 3]
Y
yangyaming 已提交
207 208 209 210 211 212 213 214 215 216

    )DOC");
  }
};

class SequencePadGradOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext* ctx) const override {
217
    PADDLE_ENFORCE_EQ(ctx->HasInput("X"), true,
218 219
                      platform::errors::NotFound(
                          "Input(X) of SequencePadGradOp should not be null."));
220 221
    PADDLE_ENFORCE_EQ(
        ctx->HasInput(framework::GradVarName("Out")), true,
222 223
        platform::errors::NotFound(
            "Input(Out@GRAD) of SequencePadGradOp should not be null."));
Y
yangyaming 已提交
224 225 226 227 228 229

    if (ctx->HasOutput(framework::GradVarName("X"))) {
      ctx->SetOutputDim(framework::GradVarName("X"), ctx->GetInputDim("X"));
      ctx->ShareLoD("X", /*->*/ framework::GradVarName("X"));
    }
  }
230 231 232 233

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
234 235
    auto data_type = OperatorWithKernel::IndicateVarDataType(
        ctx, framework::GradVarName("Out"));
236 237
    return framework::OpKernelType(data_type, ctx.device_context());
  }
Y
yangyaming 已提交
238 239
};

H
hong 已提交
240 241
template <typename T>
class SequencePadGradOpMaker : public framework::SingleGradOpMaker<T> {
242
 public:
H
hong 已提交
243
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;
244 245

 protected:
246
  void Apply(GradOpPtr<T> op) const override {
247
    op->SetType("sequence_pad_grad");
H
hong 已提交
248 249 250 251
    op->SetAttrMap(this->Attrs());
    op->SetInput("X", this->Input("X"));
    op->SetInput(framework::GradVarName("Out"), this->OutputGrad("Out"));
    op->SetOutput(framework::GradVarName("X"), this->InputGrad("X"));
252 253 254
  }
};

255
DECLARE_NO_NEED_BUFFER_VARS_INFERER(SequencePadGradOpNoNeedBufferVarsInferer,
256
                                    "X");
257

Y
yangyaming 已提交
258 259 260 261 262
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
REGISTER_OPERATOR(sequence_pad, ops::SequencePadOp, ops::SequencePadOpMaker,
H
hong 已提交
263 264
                  ops::SequencePadGradOpMaker<paddle::framework::OpDesc>,
                  ops::SequencePadGradOpMaker<paddle::imperative::OpBase>);
265
REGISTER_OPERATOR(sequence_pad_grad, ops::SequencePadGradOp,
266
                  ops::SequencePadGradOpNoNeedBufferVarsInferer);
Y
yangyaming 已提交
267 268 269 270 271 272 273 274 275 276 277 278
REGISTER_OP_CPU_KERNEL(
    sequence_pad,
    ops::SequencePadOpKernel<paddle::platform::CPUDeviceContext, float>,
    ops::SequencePadOpKernel<paddle::platform::CPUDeviceContext, double>,
    ops::SequencePadOpKernel<paddle::platform::CPUDeviceContext, int>,
    ops::SequencePadOpKernel<paddle::platform::CPUDeviceContext, int64_t>);
REGISTER_OP_CPU_KERNEL(
    sequence_pad_grad,
    ops::SequencePadGradOpKernel<paddle::platform::CPUDeviceContext, float>,
    ops::SequencePadGradOpKernel<paddle::platform::CPUDeviceContext, double>,
    ops::SequencePadGradOpKernel<paddle::platform::CPUDeviceContext, int>,
    ops::SequencePadGradOpKernel<paddle::platform::CPUDeviceContext, int64_t>);