broadcast_tensors_op.cc 7.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

15 16
#include "paddle/fluid/framework/infershape_utils.h"
#include "paddle/fluid/framework/op_registry.h"
17
#include "paddle/fluid/framework/var_type_inference.h"
18 19
#include "paddle/phi/core/infermeta_utils.h"
#include "paddle/phi/infermeta/multiary.h"
20 21 22 23

namespace paddle {
namespace operators {
using framework::DDim;
24
using framework::Tensor;
25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67

class BroadcastTensorsOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
    // Broadcast semantics enforces all input variables having the same
    // DataType/VarType
    // This condition is also checked during VarType Inference
    // Here we simply copy input type to output
    return framework::OpKernelType(
        OperatorWithKernel::IndicateVarDataType(ctx, "X"), ctx.GetPlace());
  }
};

class BroadcastTensorsOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
  void Make() override {
    AddInput("X",
             "A Varaible list. The shape and data type of the list elements"
             "should be consistent. Variable can be multi-dimensional Tensor"
             "or LoDTensor, and data types can be: bool, float16, float32, "
             "float64, int32, "
             "int64.")
        .AsDuplicable();
    AddOutput("Out",
              "the sum of input :code:`x`. its shape and data types are "
              "consistent with :code:`x`.")
        .AsDuplicable();
    AddComment(
        R"DOC(This OP is used to broadcast a vector of inputs 
                     with Tensor or LoDTensor type, following broadcast semantics.)DOC");
  }
};

class BroadcastTensorsOpVarTypeInference : public framework::VarTypeInference {
 public:
  void operator()(framework::InferVarTypeContext* ctx) const override {
    // We need at least two tensors to satisfy broadcast semantics
    size_t input_size = ctx->InputSize("X");
    PADDLE_ENFORCE_GT(
68 69
        input_size,
        0,
70 71 72 73 74 75 76 77 78 79 80 81 82
        platform::errors::InvalidArgument(
            "BroadcastTensorsOp should have at least one input variables,"
            "but only received %d ",
            input_size));

    // BroadcastTensorsOp takes a vector of variables named "X"
    // Here we loop through input variables,
    // and check if their DataType/VarType are the same
    auto var_type = ctx->GetInputType("X", 0);
    auto data_type = ctx->GetInputDataType("X", 0);
    for (size_t ind = 1; ind < input_size; ind++) {
      auto cur_var_type = ctx->GetInputType("X", ind);
      PADDLE_ENFORCE_EQ(
83 84
          var_type,
          cur_var_type,
85 86 87 88 89 90 91 92
          platform::errors::InvalidArgument(
              "inputs to BroadcastTensorsOp should have the same variable type,"
              "but detected %d v.s %d ",
              framework::ToTypeName(var_type),
              framework::ToTypeName(cur_var_type)));

      auto cur_data_type = ctx->GetInputDataType("X", ind);
      PADDLE_ENFORCE_EQ(
93 94
          data_type,
          cur_data_type,
95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113
          platform::errors::InvalidArgument(
              "inputs to BroadcastTensorsOp should have the same data type,"
              "but detected %d v.s %d ",
              framework::ToTypeName(var_type),
              framework::ToTypeName(cur_var_type)));
    }

    // Outputs having the same DataType/VarType as inputs
    ctx->SetOutputType("Out", var_type, framework::ALL_ELEMENTS);
    ctx->SetOutputDataType("Out", data_type, framework::ALL_ELEMENTS);
  }
};

/* ------ BroadcastTensorsGradOp ------ */
class BroadcastTensorsGradOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext* ctx) const override {
114 115 116 117
    OP_INOUT_CHECK(ctx->HasOutputs(framework::GradVarName("X")),
                   "Output",
                   "X@grad",
                   "broadcast_tensors");
118
    OP_INOUT_CHECK(ctx->HasInputs("X"), "Input", "X", "broadcast_tensors");
119 120 121 122
    OP_INOUT_CHECK(ctx->HasInputs(framework::GradVarName("Out")),
                   "Input",
                   "Out@grad",
                   "broadcast_tensors");
123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160

    const auto& forward_input_dims = ctx->GetInputsDim("X");
    ctx->SetOutputsDim(framework::GradVarName("X"), forward_input_dims);
    ctx->ShareAllLoD("X", /*->*/ framework::GradVarName("X"));
  }

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
    return framework::OpKernelType(OperatorWithKernel::IndicateVarDataType(
                                       ctx, framework::GradVarName("Out")),
                                   ctx.device_context());
  }
};

template <typename T>
class BroadcastTensorsGradOpMaker : public framework::SingleGradOpMaker<T> {
 public:
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;

  void Apply(GradOpPtr<T> grad_op) const override {
    grad_op->SetType("broadcast_tensors_grad");
    // We need "X" only for backward shape inference
    grad_op->SetInput("X", this->Input("X"));
    grad_op->SetInput(framework::GradVarName("Out"), this->OutputGrad("Out"));
    grad_op->SetOutput(framework::GradVarName("X"),
                       this->InputGrad("X", /* drop_empty_grad */ false));
    grad_op->SetAttrMap(this->Attrs());
  }
};

class BroadcastTensorsGradOpVarTypeInference
    : public framework::VarTypeInference {
 public:
  void operator()(framework::InferVarTypeContext* ctx) const override {
    auto var_type = ctx->GetInputType("X", 0);
    auto data_type = ctx->GetInputDataType("X", 0);

161 162 163 164
    ctx->SetOutputType(
        framework::GradVarName("X"), var_type, framework::ALL_ELEMENTS);
    ctx->SetOutputDataType(
        framework::GradVarName("X"), data_type, framework::ALL_ELEMENTS);
165 166 167 168 169 170 171 172 173 174 175 176
  }
};

DECLARE_NO_NEED_BUFFER_VARS_INFERER(BroadcastTensorsGradNoNeedBufVarsInferer,
                                    "X");

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
namespace plat = paddle::platform;

177
DECLARE_INFER_SHAPE_FUNCTOR(broadcast_tensors,
178
                            BroadcastTensorsInferShapeFunctor,
179
                            PD_INFER_META(phi::BroadcastTensorsInferMeta));
180

181 182
REGISTER_OPERATOR(broadcast_tensors,
                  ops::BroadcastTensorsOp,
183 184 185
                  ops::BroadcastTensorsOpMaker,
                  ops::BroadcastTensorsGradOpMaker<paddle::framework::OpDesc>,
                  ops::BroadcastTensorsGradOpMaker<paddle::imperative::OpBase>,
186 187
                  ops::BroadcastTensorsOpVarTypeInference,
                  BroadcastTensorsInferShapeFunctor);
188

189 190
REGISTER_OPERATOR(broadcast_tensors_grad,
                  ops::BroadcastTensorsGradOp,
191 192
                  ops::BroadcastTensorsGradOpVarTypeInference,
                  ops::BroadcastTensorsGradNoNeedBufVarsInferer);