broadcast_tensors_op.cc 10.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/operators/broadcast_tensors_op.h"

#include <algorithm>
#include <memory>
#include <string>
#include <unordered_map>
#include <vector>

#include "paddle/fluid/framework/var_type_inference.h"

namespace paddle {
namespace operators {
using framework::Tensor;
using framework::DDim;

class BroadcastTensorsOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext* ctx) const override {
    OP_INOUT_CHECK(ctx->HasInputs("X"), "Input", "X", "broadcast_tensors");
    OP_INOUT_CHECK(ctx->HasOutputs("Out"), "Output", "Out",
                   "broadcast_tensors");

    int target_rank = 0;
    const auto& input_dims = ctx->GetInputsDim("X");
41

42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67
    // 1. Find Output rank = max(Inputs rank)
    for (const auto& input_ddim : input_dims) {
      target_rank = std::max(target_rank, input_ddim.size());
    }

    PADDLE_ENFORCE_GT(
        target_rank, 0,
        platform::errors::InvalidArgument(
            "BroadcastTensorsOp requires at least one input tensor"
            "to have rank greater than zero"));

    std::vector<int64_t> target_dims(target_rank, 0);
    // 2. Output dim(axis=x) = max(Inputs dim(axis=x))
    for (int index = 0; index < target_rank; index++) {
      // Loop axes in reverse order,
      // For each axis, take the maximum as target size
      // Fill size = 1 if shape vector exhausts
      int target_dim_size = 1;
      for (const auto& input_ddim : input_dims) {
        // Reversed order
        int axis = static_cast<int>(input_ddim.size()) - index - 1;
        int dim_size = 1;
        if (axis >= 0) {
          dim_size = input_ddim[axis];
        }

68 69 70 71 72 73 74 75
        if (target_dim_size != 1 && dim_size != 1 &&
            target_dim_size != dim_size) {
          PADDLE_THROW(platform::errors::InvalidArgument(
              "BroadcastTensorsOp inputs does not satisfy bcast semantics,"
              "Please check axis = %d in reverse order",
              index));
        }

76 77 78 79 80 81 82 83 84 85
        // We performed bcast semantics check at python level
        // So input tensors should all have legal shape
        target_dim_size = std::max(target_dim_size, dim_size);
      }
      target_dims[target_rank - index - 1] = target_dim_size;
    }

    // 3. Set Output Dim
    std::vector<DDim> output_ddims;
    for (size_t i = 0; i < input_dims.size(); i++) {
86
      output_ddims.emplace_back(phi::make_ddim(target_dims));
87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262
    }
    ctx->SetOutputsDim("Out", output_ddims);
    ctx->ShareAllLoD("X", /*->*/ "Out");
  }

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
    // Broadcast semantics enforces all input variables having the same
    // DataType/VarType
    // This condition is also checked during VarType Inference
    // Here we simply copy input type to output
    return framework::OpKernelType(
        OperatorWithKernel::IndicateVarDataType(ctx, "X"), ctx.GetPlace());
  }
};

class BroadcastTensorsOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
  void Make() override {
    AddInput("X",
             "A Varaible list. The shape and data type of the list elements"
             "should be consistent. Variable can be multi-dimensional Tensor"
             "or LoDTensor, and data types can be: bool, float16, float32, "
             "float64, int32, "
             "int64.")
        .AsDuplicable();
    AddOutput("Out",
              "the sum of input :code:`x`. its shape and data types are "
              "consistent with :code:`x`.")
        .AsDuplicable();
    AddComment(
        R"DOC(This OP is used to broadcast a vector of inputs 
                     with Tensor or LoDTensor type, following broadcast semantics.)DOC");
  }
};

class BroadcastTensorsOpVarTypeInference : public framework::VarTypeInference {
 public:
  void operator()(framework::InferVarTypeContext* ctx) const override {
    // We need at least two tensors to satisfy broadcast semantics
    size_t input_size = ctx->InputSize("X");
    PADDLE_ENFORCE_GT(
        input_size, 0,
        platform::errors::InvalidArgument(
            "BroadcastTensorsOp should have at least one input variables,"
            "but only received %d ",
            input_size));

    // BroadcastTensorsOp takes a vector of variables named "X"
    // Here we loop through input variables,
    // and check if their DataType/VarType are the same
    auto var_type = ctx->GetInputType("X", 0);
    auto data_type = ctx->GetInputDataType("X", 0);
    for (size_t ind = 1; ind < input_size; ind++) {
      auto cur_var_type = ctx->GetInputType("X", ind);
      PADDLE_ENFORCE_EQ(
          var_type, cur_var_type,
          platform::errors::InvalidArgument(
              "inputs to BroadcastTensorsOp should have the same variable type,"
              "but detected %d v.s %d ",
              framework::ToTypeName(var_type),
              framework::ToTypeName(cur_var_type)));

      auto cur_data_type = ctx->GetInputDataType("X", ind);
      PADDLE_ENFORCE_EQ(
          data_type, cur_data_type,
          platform::errors::InvalidArgument(
              "inputs to BroadcastTensorsOp should have the same data type,"
              "but detected %d v.s %d ",
              framework::ToTypeName(var_type),
              framework::ToTypeName(cur_var_type)));
    }

    // Outputs having the same DataType/VarType as inputs
    ctx->SetOutputType("Out", var_type, framework::ALL_ELEMENTS);
    ctx->SetOutputDataType("Out", data_type, framework::ALL_ELEMENTS);
  }
};

/* ------ BroadcastTensorsGradOp ------ */
class BroadcastTensorsGradOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext* ctx) const override {
    OP_INOUT_CHECK(ctx->HasOutputs(framework::GradVarName("X")), "Output",
                   "X@grad", "broadcast_tensors");
    OP_INOUT_CHECK(ctx->HasInputs("X"), "Input", "X", "broadcast_tensors");
    OP_INOUT_CHECK(ctx->HasInputs(framework::GradVarName("Out")), "Input",
                   "Out@grad", "broadcast_tensors");

    const auto& forward_input_dims = ctx->GetInputsDim("X");
    ctx->SetOutputsDim(framework::GradVarName("X"), forward_input_dims);
    ctx->ShareAllLoD("X", /*->*/ framework::GradVarName("X"));
  }

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
    return framework::OpKernelType(OperatorWithKernel::IndicateVarDataType(
                                       ctx, framework::GradVarName("Out")),
                                   ctx.device_context());
  }
};

template <typename T>
class BroadcastTensorsGradOpMaker : public framework::SingleGradOpMaker<T> {
 public:
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;

  void Apply(GradOpPtr<T> grad_op) const override {
    grad_op->SetType("broadcast_tensors_grad");
    // We need "X" only for backward shape inference
    grad_op->SetInput("X", this->Input("X"));
    grad_op->SetInput(framework::GradVarName("Out"), this->OutputGrad("Out"));
    grad_op->SetOutput(framework::GradVarName("X"),
                       this->InputGrad("X", /* drop_empty_grad */ false));
    grad_op->SetAttrMap(this->Attrs());
  }
};

class BroadcastTensorsGradOpVarTypeInference
    : public framework::VarTypeInference {
 public:
  void operator()(framework::InferVarTypeContext* ctx) const override {
    auto var_type = ctx->GetInputType("X", 0);
    auto data_type = ctx->GetInputDataType("X", 0);

    ctx->SetOutputType(framework::GradVarName("X"), var_type,
                       framework::ALL_ELEMENTS);
    ctx->SetOutputDataType(framework::GradVarName("X"), data_type,
                           framework::ALL_ELEMENTS);
  }
};

DECLARE_NO_NEED_BUFFER_VARS_INFERER(BroadcastTensorsGradNoNeedBufVarsInferer,
                                    "X");

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
namespace plat = paddle::platform;

REGISTER_OPERATOR(broadcast_tensors, ops::BroadcastTensorsOp,
                  ops::BroadcastTensorsOpMaker,
                  ops::BroadcastTensorsGradOpMaker<paddle::framework::OpDesc>,
                  ops::BroadcastTensorsGradOpMaker<paddle::imperative::OpBase>,
                  ops::BroadcastTensorsOpVarTypeInference);

REGISTER_OPERATOR(broadcast_tensors_grad, ops::BroadcastTensorsGradOp,
                  ops::BroadcastTensorsGradOpVarTypeInference,
                  ops::BroadcastTensorsGradNoNeedBufVarsInferer);

REGISTER_OP_CPU_KERNEL(
    broadcast_tensors,
    ops::BroadcastTensorsOpKernel<paddle::platform::CPUDeviceContext,
                                  plat::float16>,
    ops::BroadcastTensorsOpKernel<paddle::platform::CPUDeviceContext, float>,
    ops::BroadcastTensorsOpKernel<paddle::platform::CPUDeviceContext, double>,
    ops::BroadcastTensorsOpKernel<paddle::platform::CPUDeviceContext, bool>,
    ops::BroadcastTensorsOpKernel<paddle::platform::CPUDeviceContext, int>,
    ops::BroadcastTensorsOpKernel<paddle::platform::CPUDeviceContext, int64_t>);

REGISTER_OP_CPU_KERNEL(
    broadcast_tensors_grad,
    ops::BroadcastTensorsGradOpKernel<paddle::platform::CPUDeviceContext,
                                      plat::float16>,
    ops::BroadcastTensorsGradOpKernel<paddle::platform::CPUDeviceContext,
                                      float>,
    ops::BroadcastTensorsGradOpKernel<paddle::platform::CPUDeviceContext,
                                      double>,
    ops::BroadcastTensorsGradOpKernel<paddle::platform::CPUDeviceContext, int>,
    ops::BroadcastTensorsGradOpKernel<paddle::platform::CPUDeviceContext,
                                      int64_t>);