transpose_op.cc 14.9 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
X
xzl 已提交
2

L
Luo Tao 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
X
xzl 已提交
6

L
Luo Tao 已提交
7
    http://www.apache.org/licenses/LICENSE-2.0
X
xzl 已提交
8

L
Luo Tao 已提交
9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
X
xzl 已提交
14

Y
Yi Wang 已提交
15
#include "paddle/fluid/operators/transpose_op.h"
16
#include <memory>
17
#include <string>
18
#include <vector>
X
xzl 已提交
19

20 21 22 23
#ifdef PADDLE_WITH_MKLDNN
#include "paddle/fluid/platform/mkldnn_helper.h"
#endif

X
xzl 已提交
24 25 26 27 28 29 30 31 32
namespace paddle {
namespace operators {

using framework::Tensor;

class TransposeOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

33
  void InferShape(framework::InferShapeContext *ctx) const override {
34 35
    OP_INOUT_CHECK(ctx->HasInput("X"), "Input", "X", "Transpose");
    OP_INOUT_CHECK(ctx->HasOutput("Out"), "Output", "Out", "Transpose");
Q
Qiao Longfei 已提交
36 37
    auto x_dims = ctx->GetInputDim("X");
    std::vector<int> axis = ctx->Attrs().Get<std::vector<int>>("axis");
X
xzl 已提交
38
    size_t x_rank = x_dims.size();
X
xzl 已提交
39
    size_t axis_size = axis.size();
X
xzl 已提交
40

X
xzl 已提交
41
    PADDLE_ENFORCE_EQ(x_rank, axis_size,
42 43 44 45 46 47
                      platform::errors::InvalidArgument(
                          "The input tensor's dimension "
                          "should be equal to the axis's size. "
                          "But received input tensor's dimension is %d, "
                          "axis's size is %d",
                          x_rank, axis_size));
48 49 50

    std::vector<int> count(axis_size, 0);
    for (size_t i = 0; i < axis_size; i++) {
51 52 53 54 55 56 57 58 59 60
      PADDLE_ENFORCE_EQ(
          axis[i] < static_cast<int>(axis_size) && ++count[axis[i]] == 1, true,
          platform::errors::InvalidArgument(
              "Each element of Attribute axis should "
              "be a unique value range from 0 to (dims - 1), "
              "where the dims is the axis's size, "
              "unique value means this axis value can appear only once. "
              "But received axis[%d] is %d, axis_size is %d, "
              "count[axis[%d]] is %d",
              i, axis[i], axis_size, i, count[axis[i]]));
X
xzl 已提交
61
    }
X
xzl 已提交
62

X
xzl 已提交
63
    framework::DDim out_dims(x_dims);
J
Jacek Czaja 已提交
64 65 66 67 68 69 70 71 72 73 74 75 76
#ifdef PADDLE_WITH_MKLDNN
    // Here we need to match dims to paddle layout
    // as we are producing non-oneDNN result
    if ((x_dims.size() >= 3) &&
        (paddle::platform::MKLDNNDeviceContext::tls()
             .get_cur_paddle_data_layout() == framework::DataLayout::kNHWC)) {
      auto dims = framework::vectorize<int>(x_dims);
      std::rotate(dims.begin() + 1, dims.begin() + 2, dims.end());
      x_dims = x_dims.reshape(dims);
      VLOG(3)
          << "Rotating Shape in Transpose from: kMKLDNN to: kNHWC output_shape";
    }
#endif
77
    for (size_t i = 0; i < axis_size; i++) {
X
xzl 已提交
78
      out_dims[i] = x_dims[axis[i]];
X
xzl 已提交
79
    }
Q
Qiao Longfei 已提交
80
    ctx->SetOutputDim("Out", out_dims);
X
xzl 已提交
81
  }
82 83 84 85 86 87 88 89 90

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext &ctx) const override {
    framework::LibraryType library_{framework::LibraryType::kPlain};
    std::string data_format = ctx.Attr<std::string>("data_format");
    framework::DataLayout layout_ = framework::StringToDataLayout(data_format);
#ifdef PADDLE_WITH_MKLDNN
    if (library_ == framework::LibraryType::kPlain &&
91
        this->CanMKLDNNBeUsed(ctx)) {
92 93 94 95
      library_ = framework::LibraryType::kMKLDNN;
      layout_ = framework::DataLayout::kMKLDNN;
    }
#endif
96 97
    return framework::OpKernelType(
        OperatorWithKernel::IndicateVarDataType(ctx, "X"), ctx.GetPlace(),
98
        layout_, library_);
99
  }
X
xzl 已提交
100 101 102 103
};

class TransposeOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
Y
Yu Yang 已提交
104
  void Make() override {
105
    AddInput(
X
xzl 已提交
106
        "X",
107 108
        "(Tensor) The input tensor, tensors with rank up to 6 are supported.");
    AddOutput("Out", "(Tensor)The output tensor.");
X
xzl 已提交
109 110
    AddAttr<std::vector<int>>(
        "axis",
111 112 113
        "(vector<int>) A list of values, and the size of the list should be "
        "the same with the input tensor rank. This operator permutes the input "
        "tensor's axes according to the values given.");
114 115 116 117 118 119 120 121 122 123
    AddAttr<bool>("use_mkldnn",
                  "(bool, default false) Only used in mkldnn kernel")
        .SetDefault(false);
    AddAttr<std::string>(
        "data_format",
        "(string, default NCHW) Only used in "
        "An optional string from: \"NHWC\", \"NCHW\". "
        "Defaults to \"NHWC\". Specify the data format of the output data, "
        "the input will be transformed automatically. ")
        .SetDefault("AnyLayout");
124 125 126 127
    AddAttr<bool>(
        "use_quantizer",
        "(bool, default false) "
        "This parameter is no longer used. Use 'mkldnn_data_type' instead.")
128
        .SetDefault(false);
129 130 131 132 133 134
    AddAttr<std::string>(
        "mkldnn_data_type",
        "(string, default \"float32\"). Data type of mkldnn kernel")
        .SetDefault("float32")
        .InEnum({"float32", "int8", "bfloat16"});
    /* int8 parameters */
X
xzl 已提交
135
    AddComment(R"DOC(
136 137
Transpose Operator.

138 139
The input tensor will be permuted according to the axes given.
The behavior of this operator is similar to how `numpy.transpose` works.
Y
ying 已提交
140

141 142 143 144 145 146
- suppose the input `X` is a 2-D tensor:
    $$
    X = \begin{pmatrix}
    0 &1 &2 \\
    3 &4 &5
    \end{pmatrix}$$
W
wanghaoshuang 已提交
147

148
    the given `axes` is: $[1, 0]$, and $Y$ = transpose($X$, axis)
W
wanghaoshuang 已提交
149

150
    then the output $Y$ is:
W
wanghaoshuang 已提交
151

152 153 154 155 156 157
    $$
    Y = \begin{pmatrix}
         0 &3 \\
         1 &4  \\
         2 &5
    \end{pmatrix}$$
W
wanghaoshuang 已提交
158

159
- Given a input tensor with shape $(N, C, H, W)$ and the `axes` is
160
$[0, 2, 3, 1]$, then shape of the output tensor will be: $(N, H, W, C)$.
161

X
xzl 已提交
162 163 164 165 166 167 168 169
)DOC");
  }
};

class TransposeOpGrad : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

170
  void InferShape(framework::InferShapeContext *ctx) const override {
171 172 173
    OP_INOUT_CHECK(ctx->HasInput("X"), "Input", "X", "TransposeOpGrad");
    OP_INOUT_CHECK(ctx->HasInput(framework::GradVarName("Out")), "Input",
                   framework::GradVarName("Out"), "TransposeOpGrad");
Q
Qiao Longfei 已提交
174 175 176 177 178
    auto x_dims = ctx->GetInputDim("X");
    ctx->SetOutputDim(framework::GradVarName("X"), x_dims);
    if (ctx->HasOutput(framework::GradVarName("X"))) {
      ctx->SetOutputDim(framework::GradVarName("X"), x_dims);
    }
X
xzl 已提交
179
  }
180 181 182 183 184 185 186 187 188

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext &ctx) const override {
    framework::LibraryType library_{framework::LibraryType::kPlain};
    std::string data_format = ctx.Attr<std::string>("data_format");
    framework::DataLayout layout_ = framework::StringToDataLayout(data_format);
#ifdef PADDLE_WITH_MKLDNN
    if (library_ == framework::LibraryType::kPlain &&
189
        this->CanMKLDNNBeUsed(ctx)) {
190 191 192 193
      library_ = framework::LibraryType::kMKLDNN;
      layout_ = framework::DataLayout::kMKLDNN;
    }
#endif
194 195 196
    return framework::OpKernelType(OperatorWithKernel::IndicateVarDataType(
                                       ctx, framework::GradVarName("Out")),
                                   ctx.GetPlace(), layout_, library_);
197
  }
X
xzl 已提交
198 199
};

200 201 202 203 204 205 206 207 208 209 210 211 212 213 214
// FIXME(zcd): transpose2 adds an intermediate output(XShape) based on
// transpose, the XShape is used to carry the shape and lod of X which
// will be used in transpose_grad, in this way, the framework can reuse
// the memory of X immediately the transpose2_op is finished.
// Considering compatibility issues, we could not fix transpose2_op
class Transpose2Op : public TransposeOp {
 public:
  Transpose2Op(const std::string &type,
               const framework::VariableNameMap &inputs,
               const framework::VariableNameMap &outputs,
               const framework::AttributeMap &attrs)
      : TransposeOp(type, inputs, outputs, attrs) {}

  void InferShape(framework::InferShapeContext *ctx) const override {
    TransposeOp::InferShape(ctx);
215
    OP_INOUT_CHECK(ctx->HasOutput("XShape"), "Output", "XShape", "Transpose2");
216 217 218 219 220 221 222 223 224 225 226 227 228
    const auto &in_dims = ctx->GetInputDim("X");
    std::vector<int64_t> x_shape_dim(in_dims.size() + 1);
    x_shape_dim[0] = 0;
    for (int i = 0; i < in_dims.size(); ++i) {
      x_shape_dim[i + 1] = in_dims[i];
    }
    ctx->SetOutputDim("XShape", framework::make_ddim(x_shape_dim));
    ctx->ShareLoD("X", /*->*/ "XShape");
  }

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext &ctx) const override {
229 230
    framework::LibraryType library_{framework::LibraryType::kPlain};
    std::string data_format = ctx.Attr<std::string>("data_format");
231 232
    int customized_type_value =
        framework::OpKernelType::kDefaultCustomizedTypeValue;
233 234 235
    framework::DataLayout layout_ = framework::StringToDataLayout(data_format);
#ifdef PADDLE_WITH_MKLDNN
    if (library_ == framework::LibraryType::kPlain &&
236
        this->CanMKLDNNBeUsed(ctx)) {
237 238
      library_ = framework::LibraryType::kMKLDNN;
      layout_ = framework::DataLayout::kMKLDNN;
239 240 241 242 243 244
      using framework::proto::VarType;
      auto input_data_type = ctx.Input<Tensor>("X")->type();
      customized_type_value = (input_data_type == VarType::INT8 ||
                               input_data_type == VarType::UINT8)
                                  ? kTransposeMKLDNNINT8
                                  : kTransposeMKLDNNFP32;
245 246
    }
#endif
247 248
    return framework::OpKernelType(
        OperatorWithKernel::IndicateVarDataType(ctx, "X"), ctx.GetPlace(),
249
        layout_, library_, customized_type_value);
250 251 252 253 254 255 256 257 258 259 260
  }
};

class Transpose2OpMaker : public TransposeOpMaker {
 public:
  void Make() override {
    TransposeOpMaker::Make();
    AddOutput("XShape", "(Tensor)The output tensor.").AsIntermediate();
  }
};

H
hong 已提交
261 262
template <typename T>
class Transpose2GradMaker : public framework::SingleGradOpMaker<T> {
263
 public:
H
hong 已提交
264
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;
265

266
  void Apply(GradOpPtr<T> grad_op) const override {
267
    grad_op->SetType("transpose2_grad");
H
hong 已提交
268 269 270 271
    grad_op->SetInput("XShape", this->Output("XShape"));
    grad_op->SetInput(framework::GradVarName("Out"), this->OutputGrad("Out"));
    grad_op->SetOutput(framework::GradVarName("X"), this->InputGrad("X"));
    grad_op->SetAttrMap(this->Attrs());
272 273 274
  }
};

275 276 277 278 279 280 281 282 283 284 285 286 287 288
template <typename T>
class Transpose2DoubleGradMaker : public framework::SingleGradOpMaker<T> {
 public:
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;

  void Apply(GradOpPtr<T> grad_op) const override {
    grad_op->SetType("transpose2");
    grad_op->SetInput("X", this->OutputGrad(framework::GradVarName("X")));
    grad_op->SetOutput("Out", this->InputGrad(framework::GradVarName("Out")));
    grad_op->SetOutput("XShape", this->Input("XShape"));
    grad_op->SetAttrMap(this->Attrs());
  }
};

289 290 291 292 293
class Transpose2OpGrad : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext *ctx) const override {
294 295 296 297
    OP_INOUT_CHECK(ctx->HasInput("XShape"), "Input", "XShape",
                   "Transpose2OpGrad");
    OP_INOUT_CHECK(ctx->HasInput(framework::GradVarName("Out")), "Input",
                   framework::GradVarName("Out"), "Transpose2OpGrad");
298 299 300 301 302 303 304 305 306 307 308 309
    if (ctx->HasOutput(framework::GradVarName("X"))) {
      auto xshape_dim = ctx->GetInputDim("XShape");
      auto x_shape_dim =
          framework::slice_ddim(xshape_dim, 1, xshape_dim.size());
      ctx->SetOutputDim(framework::GradVarName("X"), x_shape_dim);
      ctx->ShareLoD("XShape", framework::GradVarName("X"));
    }
  }

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext &ctx) const override {
310 311 312 313 314
    framework::LibraryType library_{framework::LibraryType::kPlain};
    std::string data_format = ctx.Attr<std::string>("data_format");
    framework::DataLayout layout_ = framework::StringToDataLayout(data_format);
#ifdef PADDLE_WITH_MKLDNN
    if (library_ == framework::LibraryType::kPlain &&
315
        this->CanMKLDNNBeUsed(ctx)) {
316 317 318 319
      library_ = framework::LibraryType::kMKLDNN;
      layout_ = framework::DataLayout::kMKLDNN;
    }
#endif
320 321 322
    return framework::OpKernelType(OperatorWithKernel::IndicateVarDataType(
                                       ctx, framework::GradVarName("Out")),
                                   ctx.GetPlace(), layout_, library_);
323 324 325
  }
};

X
xzl 已提交
326 327 328 329
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
H
hong 已提交
330 331 332 333
REGISTER_OPERATOR(
    transpose, ops::TransposeOp, ops::TransposeOpMaker,
    paddle::framework::DefaultGradOpMaker<paddle::framework::OpDesc, true>,
    paddle::framework::DefaultGradOpMaker<paddle::imperative::OpBase, true>);
334
REGISTER_OPERATOR(transpose_grad, ops::TransposeOpGrad);
335

Q
QI JUN 已提交
336
REGISTER_OP_CPU_KERNEL(
P
phlrain 已提交
337
    transpose, ops::TransposeKernel<paddle::platform::CPUDeviceContext, float>,
C
chentianyu03 已提交
338 339 340 341 342
    ops::TransposeKernel<paddle::platform::CPUDeviceContext, double>,
    ops::TransposeKernel<paddle::platform::CPUDeviceContext,
                         paddle::platform::complex64>,
    ops::TransposeKernel<paddle::platform::CPUDeviceContext,
                         paddle::platform::complex128>);
X
xzl 已提交
343 344
REGISTER_OP_CPU_KERNEL(
    transpose_grad,
P
phlrain 已提交
345
    ops::TransposeGradKernel<paddle::platform::CPUDeviceContext, float>,
C
chentianyu03 已提交
346 347 348 349 350
    ops::TransposeGradKernel<paddle::platform::CPUDeviceContext, double>,
    ops::TransposeGradKernel<paddle::platform::CPUDeviceContext,
                             paddle::platform::complex64>,
    ops::TransposeGradKernel<paddle::platform::CPUDeviceContext,
                             paddle::platform::complex128>);
351 352

REGISTER_OPERATOR(transpose2, ops::Transpose2Op, ops::Transpose2OpMaker,
H
hong 已提交
353 354
                  ops::Transpose2GradMaker<paddle::framework::OpDesc>,
                  ops::Transpose2GradMaker<paddle::imperative::OpBase>);
355 356 357
REGISTER_OPERATOR(transpose2_grad, ops::Transpose2OpGrad,
                  ops::Transpose2DoubleGradMaker<paddle::framework::OpDesc>,
                  ops::Transpose2DoubleGradMaker<paddle::imperative::OpBase>);
358 359

REGISTER_OP_CPU_KERNEL(
P
phlrain 已提交
360
    transpose2, ops::TransposeKernel<paddle::platform::CPUDeviceContext, float>,
361 362
    ops::TransposeKernel<paddle::platform::CPUDeviceContext, int32_t>,
    ops::TransposeKernel<paddle::platform::CPUDeviceContext, int64_t>,
C
chentianyu03 已提交
363 364 365 366 367
    ops::TransposeKernel<paddle::platform::CPUDeviceContext, double>,
    ops::TransposeKernel<paddle::platform::CPUDeviceContext,
                         paddle::platform::complex64>,
    ops::TransposeKernel<paddle::platform::CPUDeviceContext,
                         paddle::platform::complex128>);
368 369
REGISTER_OP_CPU_KERNEL(
    transpose2_grad,
370 371
    ops::TransposeGradKernel<paddle::platform::CPUDeviceContext, int32_t>,
    ops::TransposeGradKernel<paddle::platform::CPUDeviceContext, int64_t>,
P
phlrain 已提交
372
    ops::TransposeGradKernel<paddle::platform::CPUDeviceContext, float>,
C
chentianyu03 已提交
373 374 375 376 377
    ops::TransposeGradKernel<paddle::platform::CPUDeviceContext, double>,
    ops::TransposeGradKernel<paddle::platform::CPUDeviceContext,
                             paddle::platform::complex64>,
    ops::TransposeGradKernel<paddle::platform::CPUDeviceContext,
                             paddle::platform::complex128>);