operator.cc 37.1 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Q
Qiao Longfei 已提交
2 3 4 5 6 7 8 9 10 11 12 13

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
D
dzhwinter 已提交
14

15 16
#include <gflags/gflags.h>
#include <glog/logging.h>
17

18
#include <algorithm>
P
peizhilin 已提交
19 20 21
#include <sstream>
#include <string>
#include <vector>
Y
Yi Wang 已提交
22 23
#include "paddle/fluid/framework/data_transform.h"
#include "paddle/fluid/framework/executor.h"
24
#include "paddle/fluid/framework/lod_tensor.h"
25
#include "paddle/fluid/framework/op_proto_maker.h"
26
#include "paddle/fluid/framework/operator.h"
Y
Yi Wang 已提交
27
#include "paddle/fluid/framework/shape_inference.h"
28
#include "paddle/fluid/framework/transfer_scope_cache.h"
Y
Yi Wang 已提交
29
#include "paddle/fluid/framework/var_type.h"
30
#include "paddle/fluid/platform/profiler.h"
Q
Qiao Longfei 已提交
31

D
dzhwinter 已提交
32
DECLARE_bool(benchmark);
C
chengduoZH 已提交
33 34 35
DEFINE_bool(check_nan_inf, false,
            "Checking whether operator produce NAN/INF or not. It will be "
            "extremely slow so please use this flag wisely.");
Q
Qiao Longfei 已提交
36
DEFINE_int32(inner_op_parallelism, 0, "number of threads for inner op");
D
dzhwinter 已提交
37

Q
Qiao Longfei 已提交
38 39 40
namespace paddle {
namespace framework {

41 42 43 44 45 46
std::vector<std::tuple<platform::Place, LibraryType>> kKernelPriority = {
    std::make_tuple(platform::CUDAPlace(0), LibraryType::kCUDNN),
    std::make_tuple(platform::CUDAPlace(0), LibraryType::kPlain),
    std::make_tuple(platform::CPUPlace(), LibraryType::kMKLDNN),
    std::make_tuple(platform::CPUPlace(), LibraryType::kPlain),
};
D
dzhwinter 已提交
47

Q
qiaolongfei 已提交
48 49
proto::VarType::Type GetDataTypeOfVar(const Variable* var) {
  if (var->IsType<framework::LoDTensor>()) {
Y
Yu Yang 已提交
50
    return var->Get<framework::LoDTensor>().type();
Q
qiaolongfei 已提交
51
  } else if (var->IsType<framework::SelectedRows>()) {
Y
Yu Yang 已提交
52
    return var->Get<framework::SelectedRows>().value().type();
Q
qiaolongfei 已提交
53 54 55 56 57
  } else {
    PADDLE_THROW("Var should be LoDTensor or SelectedRows");
  }
}

58 59
static DDim GetDims(const Scope& scope, const std::string& name,
                    bool get_actual_dim = false) {
60
  Variable* var = scope.FindVar(name);
Q
qiaolongfei 已提交
61 62
  if (var == nullptr) {
    return DDim({-1});
Q
Qiao Longfei 已提交
63 64
  }

M
minqiyang 已提交
65 66
  if (var->IsType<LoDTensor>()) {
    const LoDTensor& tensor = var->Get<LoDTensor>();
M
minqiyang 已提交
67
    if (UNLIKELY(!tensor.IsInitialized())) {
68
      return DDim({-1});
69
    }
M
minqiyang 已提交
70 71 72 73 74 75 76
    return tensor.dims();
  } else if (var->IsType<SelectedRows>()) {
    if (get_actual_dim) {
      return var->Get<SelectedRows>().value().dims();
    } else {
      return var->Get<SelectedRows>().GetCompleteDims();
    }
77 78 79 80 81
  } else {
    return DDim({-1});
  }
}

Q
Qiao Longfei 已提交
82 83 84 85 86 87
static bool VarInited(const Scope& scope, const std::string& name) {
  Variable* var = scope.FindVar(name);
  if (var == nullptr) return false;
  return var->IsInitialized();
}

D
dzhwinter 已提交
88 89 90 91 92
static std::string GetDtype(const Scope& scope, const std::string& name) {
  Variable* var = scope.FindVar(name);
  if (var == nullptr) {
    return "";
  }
93

M
minqiyang 已提交
94 95 96
  if (var->IsType<LoDTensor>()) {
    const LoDTensor& tensor = var->Get<LoDTensor>();
    if (UNLIKELY(!tensor.IsInitialized())) {
97 98
      return "";
    }
Y
Yu Yang 已提交
99
    return DataTypeToString(tensor.type());
M
minqiyang 已提交
100
  } else if (var->IsType<SelectedRows>()) {
Q
Qiao Longfei 已提交
101 102 103 104
    auto tensor = var->Get<SelectedRows>().value();
    if (UNLIKELY(!tensor.IsInitialized())) {
      return "uninited";
    } else {
Y
Yu Yang 已提交
105
      return DataTypeToString(tensor.type());
Q
Qiao Longfei 已提交
106
    }
D
dzhwinter 已提交
107 108 109 110 111
  } else {
    return "";
  }
}

112 113 114 115 116 117
static int GetRowSize(const Scope& scope, const std::string& name) {
  Variable* var = scope.FindVar(name);
  if (var == nullptr) {
    return -1;
  }

M
minqiyang 已提交
118 119
  if (var->IsType<SelectedRows>()) {
    return var->Get<SelectedRows>().rows().size();
120 121 122 123 124
  }

  return -1;
}

Q
Qiao Longfei 已提交
125 126 127 128 129 130 131 132
static LoD GetLoD(const Scope& scope, const std::string& name) {
  Variable* var = scope.FindVar(name);
  auto default_lod = LoD({{}});

  if (var == nullptr) {
    return default_lod;
  }

M
minqiyang 已提交
133 134 135
  if (var->IsType<LoDTensor>()) {
    const LoDTensor& tensor = var->Get<LoDTensor>();
    if (UNLIKELY(!tensor.IsInitialized())) {
136 137
      return default_lod;
    }
M
minqiyang 已提交
138
    return tensor.lod();
Q
Qiao Longfei 已提交
139 140 141 142 143
  } else {
    return default_lod;
  }
}

X
Xin Pan 已提交
144 145 146 147 148
RuntimeContext::RuntimeContext(const VariableNameMap& innames,
                               const VariableNameMap& outnames,
                               const Scope& scope) {
  for (auto& var_name_item : innames) {
    std::vector<Variable*>& input_vars = inputs[var_name_item.first];
X
Xin Pan 已提交
149
    input_vars.reserve(var_name_item.second.size());
X
Xin Pan 已提交
150 151 152 153 154 155
    for (auto& var_name : var_name_item.second) {
      input_vars.push_back(scope.FindVar(var_name));
    }
  }
  for (auto& var_name_item : outnames) {
    std::vector<Variable*>& output_vars = outputs[var_name_item.first];
X
Xin Pan 已提交
156
    output_vars.reserve(var_name_item.second.size());
X
Xin Pan 已提交
157 158 159 160 161 162
    for (auto& var_name : var_name_item.second) {
      output_vars.push_back(scope.FindVar(var_name));
    }
  }
}

163
void OperatorBase::Run(const Scope& scope, const platform::Place& place) {
P
peizhilin 已提交
164 165 166
  try {
    VLOG(4) << place << " " << DebugStringEx(&scope);
    if (platform::is_gpu_place(place)) {
167
#ifndef PADDLE_WITH_CUDA
P
peizhilin 已提交
168
      PADDLE_THROW("Cannot run operator on place %s", place);
169
#else
P
peizhilin 已提交
170 171
      auto dev_id = boost::get<platform::CUDAPlace>(place).device;
      platform::SetDeviceId(dev_id);
172
#endif
P
peizhilin 已提交
173
    }
P
peizhilin 已提交
174

P
peizhilin 已提交
175 176 177 178 179 180 181 182 183 184 185 186
    // The profile has a process-wide mutex, results in serious performance
    // issue
    // in concurrency scenerio. Here use an `if` to fix this issue.
    // Please not remove the `if`, ask @Superjomn if there are any concern.
    if (platform::IsProfileEnabled()) {
      platform::DeviceContextPool& pool =
          platform::DeviceContextPool::Instance();
      platform::RecordEvent record_event(Type(), pool.Get(place));
      RunImpl(scope, place);
    } else {
      RunImpl(scope, place);
    }
187

P
peizhilin 已提交
188 189 190 191 192
    VLOG(3) << place << " " << DebugStringEx(&scope);
  } catch (platform::EnforceNotMet exception) {
    if (Attrs().count("sub_block") != 0) {
      throw exception;
    }
193

P
peizhilin 已提交
194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211
    auto& callstack = Attr<std::vector<std::string>>(
        OpProtoAndCheckerMaker::OpCreationCallstackAttrName());

    if (callstack.empty()) {
      throw exception;
    }
    std::ostringstream sout;
    sout << "Invoke operator " << Type() << " error.\n";
    sout << "Python Callstacks: \n";
    for (auto& line : callstack) {
      sout << line;
    }
    sout << "C++ Callstacks: \n";
    sout << exception.err_str_;
    exception.err_str_ = sout.str();
    throw exception;
  } catch (...) {
    std::rethrow_exception(std::current_exception());
212
  }
213 214
}

215
bool OperatorBase::HasInputs(const std::string& name) const {
M
minqiyang 已提交
216
  return inputs_.find(name) != inputs_.end();
217 218
}

219
std::string OperatorBase::Input(const std::string& name) const {
Y
Yu Yang 已提交
220
  auto& ins = Inputs(name);
Y
Yu Yang 已提交
221
  PADDLE_ENFORCE_LE(ins.size(), 1UL,
222 223
                    "Operator %s's input %s should contain only one variable.",
                    type_, name);
Y
Yu Yang 已提交
224
  return ins.empty() ? kEmptyVarName : ins[0];
Y
Yan Chunwei 已提交
225 226
}

Y
Yu Yang 已提交
227 228
const std::vector<std::string>& OperatorBase::Inputs(
    const std::string& name) const {
Y
Yu Yang 已提交
229
  auto it = inputs_.find(name);
230 231
  PADDLE_ENFORCE(it != inputs_.end(), "Operator %s does not have the input %s.",
                 type_, name);
Y
Yu Yang 已提交
232
  return it->second;
Y
Yan Chunwei 已提交
233 234
}

235
bool OperatorBase::HasOutputs(const std::string& name) const {
236
  if (outputs_.find(name) != outputs_.end()) {
237 238 239 240 241 242
    return true;
  } else {
    return false;
  }
}

243
std::string OperatorBase::Output(const std::string& name) const {
Y
Yu Yang 已提交
244
  auto& outs = Outputs(name);
Y
Yu Yang 已提交
245
  PADDLE_ENFORCE_LE(outs.size(), 1UL,
246 247
                    "Operator %s's output %s should contain only one variable.",
                    type_, name);
Y
Yu Yang 已提交
248
  return outs.empty() ? kEmptyVarName : outs[0];
Y
Yan Chunwei 已提交
249 250
}

Y
Yu Yang 已提交
251 252
const std::vector<std::string>& OperatorBase::Outputs(
    const std::string& name) const {
Y
Yu Yang 已提交
253
  auto it = outputs_.find(name);
254 255
  PADDLE_ENFORCE(it != outputs_.end(),
                 "Operator %s does not have an output called %s.", type_, name);
Y
Yu Yang 已提交
256
  return it->second;
Y
Yan Chunwei 已提交
257 258
}

259
std::string OperatorBase::DebugStringEx(const Scope* scope) const {
Q
Qiao Longfei 已提交
260
  std::stringstream ss;
Y
Yu Yang 已提交
261
  ss << "Op(" << type_ << "), inputs:{";
Y
Yu Yang 已提交
262 263
  for (auto it = inputs_.begin(); it != inputs_.end();) {
    auto& input = *it;
Y
Yu Yang 已提交
264 265
    ss << input.first << "[";
    for (size_t i = 0; i < input.second.size(); ++i) {
Q
Qiao Longfei 已提交
266 267
      auto var_name = input.second[i];
      ss << var_name;
268
      if (scope) {
Q
Qiao Longfei 已提交
269 270 271 272 273 274 275 276 277 278 279
        if (!VarInited(*scope, var_name)) {
          ss << "[uninited]";
        } else {
          int row_size = GetRowSize(*scope, var_name);
          if (row_size >= 0) {
            ss << "[row_size=" << row_size << "]";
          }
          std::string dtype = GetDtype(*scope, var_name);
          ss << ":" << dtype;
          ss << "[" << GetDims(*scope, var_name, true) << "]";
          ss << "(" << GetLoD(*scope, var_name) << ")";
280
        }
281
      }
Y
Yu Yang 已提交
282 283 284
      if (i != input.second.size() - 1) {
        ss << ", ";
      }
285
    }
Y
Yu Yang 已提交
286
    ss << "]";
Y
Yu Yang 已提交
287 288
    ++it;
    if (it != inputs_.end()) {
289 290
      ss << ", ";
    }
Q
Qiao Longfei 已提交
291
  }
Y
Yu Yang 已提交
292
  ss << "}, outputs:{";
Y
Yu Yang 已提交
293 294
  for (auto it = outputs_.begin(); it != outputs_.end();) {
    auto& output = *it;
Y
Yu Yang 已提交
295 296
    ss << output.first << "[";
    for (size_t i = 0; i < output.second.size(); ++i) {
Q
Qiao Longfei 已提交
297 298
      auto var_name = output.second[i];
      ss << var_name;
299
      if (scope) {
Q
Qiao Longfei 已提交
300 301 302 303 304 305 306
        if (!VarInited(*scope, var_name)) {
          ss << "[uninited]";
        } else {
          int row_size = GetRowSize(*scope, output.second[i]);
          if (row_size >= 0) {
            ss << "[row_size=" << row_size << "]";
          }
C
chengduo 已提交
307 308
          std::string dtype = GetDtype(*scope, output.second[i]);
          ss << ":" << dtype;
Q
Qiao Longfei 已提交
309 310
          ss << "[" << GetDims(*scope, var_name, true) << "]";
          ss << "(" << GetLoD(*scope, var_name) << ")";
311
        }
312
      }
Y
Yu Yang 已提交
313 314 315
      if (i != output.second.size() - 1) {
        ss << ", ";
      }
316
    }
Y
Yu Yang 已提交
317
    ss << "]";
Y
Yu Yang 已提交
318 319
    ++it;
    if (it != outputs_.end()) {
320 321
      ss << ", ";
    }
Q
Qiao Longfei 已提交
322
  }
Y
Yu Yang 已提交
323
  ss << "}.";
Q
Qiao Longfei 已提交
324 325 326
  return ss.str();
}

Y
Yu Yang 已提交
327
OperatorBase::OperatorBase(const std::string& type,
Y
Yu Yang 已提交
328 329
                           const VariableNameMap& inputs,
                           const VariableNameMap& outputs,
Y
Yu Yang 已提交
330 331
                           const AttributeMap& attrs)
    : type_(type), inputs_(inputs), outputs_(outputs), attrs_(attrs) {
332 333
  GenerateTemporaryNames();
  CheckAllInputOutputSet();
Y
Yu Yang 已提交
334
}
335

Q
qijun 已提交
336 337
std::vector<std::string> OperatorBase::InputVars() const {
  std::vector<std::string> ret_val;
Y
Yu Yang 已提交
338
  for (auto& o : inputs_) {
Q
qijun 已提交
339 340 341 342 343 344
    ret_val.reserve(ret_val.size() + o.second.size());
    ret_val.insert(ret_val.end(), o.second.begin(), o.second.end());
  }
  return ret_val;
}

Y
Yu Yang 已提交
345 346 347 348 349 350 351 352 353 354
std::vector<std::string> OperatorBase::OutputVars(bool has_intermediate) const {
  std::vector<std::string> ret_val;
  if (has_intermediate) {
    // push all outputs into ret_val
    for (auto& o : outputs_) {
      ret_val.reserve(ret_val.size() + o.second.size());
      ret_val.insert(ret_val.end(), o.second.begin(), o.second.end());
    }
    return ret_val;
  }
Y
Yu Yang 已提交
355
  auto& info = OpInfoMap::Instance().Get(Type());
Y
Yu Yang 已提交
356 357

  // get all OpProto::Var for outputs
Y
Yu Yang 已提交
358
  for (auto& o : info.Proto().outputs()) {
Y
Yu Yang 已提交
359 360 361 362 363 364 365 366 367
    // ignore all intermediate output
    if (o.intermediate()) continue;
    auto out = outputs_.find(o.name());
    if (out != outputs_.end()) {
      ret_val.reserve(ret_val.size() + out->second.size());
      ret_val.insert(ret_val.end(), out->second.begin(), out->second.end());
    }
  }
  return ret_val;
D
dongzhihong 已提交
368 369
}

370 371 372
void OperatorBase::CheckAllInputOutputSet() const {
  auto& info_map = OpInfoMap::Instance();
  auto* op_info = info_map.GetNullable(Type());
Y
Yu Yang 已提交
373
  if (op_info == nullptr || op_info->proto_ == nullptr) return;
374 375

  for (auto& in : op_info->Proto().inputs()) {
376 377 378 379
    if (!in.dispensable()) {
      PADDLE_ENFORCE(inputs_.find(in.name()) != inputs_.end(),
                     "Operator %s's input, %s, is not set", Type(), in.name());
    }
380 381 382
  }

  for (auto& out : op_info->Proto().outputs()) {
383 384 385 386 387
    if (!out.dispensable()) {
      PADDLE_ENFORCE(outputs_.find(out.name()) != outputs_.end(),
                     "Operator %s's output, %s, is not set", Type(),
                     out.name());
    }
388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403
  }
}

void OperatorBase::GenerateTemporaryNames() {
  static std::atomic<size_t> gUniqId(0UL);
  for (auto& output : outputs_) {
    for (auto& output_name : output.second) {
      if (output_name == kTempVarName) {
        output_name += type_;
        output_name += "@";
        output_name += std::to_string(gUniqId.fetch_add(1));
      }
    }
  }
}

B
baojun-nervana 已提交
404
static bool VarIsTensor(const Variable& var) {
C
chengduo 已提交
405
  return var.IsType<LoDTensor>() || var.IsType<SelectedRows>();
406 407
}

C
chengduo 已提交
408
const Tensor* GetLoDTensorOrSelectedRowsValueFromVar(const Variable& var) {
C
chengduo 已提交
409 410 411 412
  if (var.IsType<LoDTensor>()) {
    return static_cast<const Tensor*>(&(var.Get<LoDTensor>()));
  } else if (var.IsType<SelectedRows>()) {
    return &(var.Get<SelectedRows>().value());
Q
QI JUN 已提交
413
  } else {
Y
Yang Yang 已提交
414
    PADDLE_THROW("Variable type_id %s, expect LoDTensor/SelectedRows.",
S
sneaxiy 已提交
415
                 ToTypeName(var.Type()));
Q
QI JUN 已提交
416 417 418
  }
}

C
chengduo 已提交
419
Tensor* GetMutableLoDTensorOrSelectedRowsValueFromVar(Variable* var) {
Q
QI JUN 已提交
420
  if (var->IsType<LoDTensor>()) {
421
    return var->GetMutable<LoDTensor>();
Q
QI JUN 已提交
422
  } else if (var->IsType<SelectedRows>()) {
423
    return var->GetMutable<SelectedRows>()->mutable_value();
Q
QI JUN 已提交
424
  } else {
Y
Yang Yang 已提交
425
    PADDLE_THROW("Variable type_id %s, expect LoDTensor/SelectedRows.",
S
sneaxiy 已提交
426
                 ToTypeName(var->Type()));
Q
QI JUN 已提交
427 428 429
  }
}

430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461
bool ExecutionContext::HasInput(const std::string& name) const {
  if (!op_.HasInputs(name)) {
    return false;
  }
  auto& ins = Inputs(name);
  size_t length = ins.size();
  if (length == 0) {
    return false;
  }
  PADDLE_ENFORCE_EQ(length, 1UL,
                    "Input %s should not have more than one inputs", name);
  auto arg = ins[0];
  auto* var = arg == kEmptyVarName ? nullptr : scope_.FindVar(arg);
  return var != nullptr;
}

bool ExecutionContext::HasOutput(const std::string& name) const {
  if (!op_.HasOutputs(name)) {
    return false;
  }
  auto& outs = Outputs(name);
  size_t length = outs.size();
  if (length == 0) {
    return false;
  }
  PADDLE_ENFORCE_EQ(length, 1UL,
                    "Output %s should not have more than one inputs", name);
  auto arg = outs[0];
  auto* var = arg == kEmptyVarName ? nullptr : scope_.FindVar(arg);
  return var != nullptr;
}

X
Xin Pan 已提交
462 463 464 465 466 467 468 469 470 471
const Variable* ExecutionContext::InputVar(const std::string& name) const {
  auto it = ctx_.inputs.find(name);
  if (it == ctx_.inputs.end()) return nullptr;

  PADDLE_ENFORCE_LE(it->second.size(), 1UL,
                    "Operator %s's input %s should contain only one variable.",
                    op_.Type(), name);
  return it->second.empty() ? nullptr : it->second[0];
}

X
clean  
Xin Pan 已提交
472 473 474 475
const Variable* ExecutionContext::LegacyInputVar(
    const std::string& name) const {
  auto ipt = op_.Input(name);
  return ipt == kEmptyVarName ? nullptr : scope_.FindVar(ipt);
X
Xin Pan 已提交
476 477
}

X
clean  
Xin Pan 已提交
478
Variable* ExecutionContext::OutputVar(const std::string& name) const {
X
Xin Pan 已提交
479 480 481 482 483 484 485 486 487
  auto it = ctx_.outputs.find(name);
  if (it == ctx_.outputs.end()) return nullptr;

  PADDLE_ENFORCE_LE(it->second.size(), 1UL,
                    "Operator %s's output %s should contain only one variable.",
                    op_.Type(), name);
  return it->second.empty() ? nullptr : it->second[0];
}

X
clean  
Xin Pan 已提交
488 489 490 491 492
Variable* ExecutionContext::LegacyOutputVar(const std::string& name) const {
  auto opt = op_.Output(name);
  return opt == kEmptyVarName ? nullptr : scope_.FindVar(opt);
}

493
template <>
494
const Tensor* ExecutionContext::Input<Tensor>(const std::string& name) const {
C
chengduo 已提交
495
  return Input<LoDTensor>(name);
496 497
}

X
Xin Pan 已提交
498
template <>
X
clean  
Xin Pan 已提交
499
const Tensor* ExecutionContext::LegacyInput<Tensor>(
X
Xin Pan 已提交
500
    const std::string& name) const {
X
clean  
Xin Pan 已提交
501
  return LegacyInput<LoDTensor>(name);
X
Xin Pan 已提交
502 503
}

504
template <>
505
const std::vector<const Tensor*> ExecutionContext::MultiInput<Tensor>(
506
    const std::string& name) const {
X
Xin Pan 已提交
507 508 509 510 511 512 513 514 515 516 517 518 519
  auto it = ctx_.inputs.find(name);
  if (it == ctx_.inputs.end()) {
    return {};
  }
  const std::vector<Variable*>& vars = it->second;
  std::vector<const Tensor*> res;
  res.reserve(vars.size());
  std::transform(vars.begin(), vars.end(), std::back_inserter(res),
                 [&](Variable* var) -> const Tensor* {
                   if (var == nullptr) return nullptr;
                   PADDLE_ENFORCE(
                       var->IsType<LoDTensor>(),
                       "should be LoDTensor, but the received type is %s",
S
sneaxiy 已提交
520
                       ToTypeName(var->Type()));
X
Xin Pan 已提交
521 522 523 524 525 526 527 528
                   return &(var->Get<LoDTensor>());
                 });
  return res;
}

template <>
const std::vector<const Tensor*> ExecutionContext::LegacyMultiInput<Tensor>(
    const std::string& name) const {
529 530 531
  auto names = op().Inputs(name);
  std::vector<const Tensor*> res;
  res.reserve(names.size());
532
  std::transform(names.begin(), names.end(), std::back_inserter(res),
C
chengduo 已提交
533
                 [&](const std::string& sub_name) -> const Tensor* {
534
                   auto var = scope_.FindVar(sub_name);
C
chengduo 已提交
535 536 537 538
                   if (var == nullptr) return nullptr;
                   PADDLE_ENFORCE(
                       var->IsType<LoDTensor>(),
                       "%s should be LoDTensor, but the received type is %s",
S
sneaxiy 已提交
539
                       sub_name, ToTypeName(var->Type()));
C
chengduo 已提交
540
                   return &(var->Get<LoDTensor>());
541
                 });
542 543 544 545
  return res;
}

template <>
546
Tensor* ExecutionContext::Output<Tensor>(const std::string& name) const {
C
chengduo 已提交
547
  return Output<LoDTensor>(name);
548 549
}

X
Xin Pan 已提交
550
template <>
X
clean  
Xin Pan 已提交
551 552
Tensor* ExecutionContext::LegacyOutput<Tensor>(const std::string& name) const {
  return LegacyOutput<LoDTensor>(name);
X
Xin Pan 已提交
553 554
}

555
template <>
556
std::vector<Tensor*> ExecutionContext::MultiOutput<Tensor>(
557
    const std::string& name) const {
J
JiabinYang 已提交
558 559 560 561 562
  auto it = ctx_.outputs.find(name);
  if (it == ctx_.outputs.end()) {
    return {};
  }
  const std::vector<Variable*>& vars = it->second;
563
  std::vector<Tensor*> res;
J
JiabinYang 已提交
564 565 566 567 568
  res.reserve(vars.size());
  std::transform(vars.begin(), vars.end(), std::back_inserter(res),
                 [&](Variable* var) -> Tensor* {
                   return var == nullptr ? nullptr
                                         : var->GetMutable<LoDTensor>();
569
                 });
570 571 572
  return res;
}

Y
Yu Yang 已提交
573 574 575 576 577 578 579 580 581 582 583 584 585 586 587
bool OpSupportGPU(const std::string& op_type) {
  auto& all_kernels = OperatorWithKernel::AllOpKernels();
  auto it = all_kernels.find(op_type);
  if (it == all_kernels.end()) {
    // All control operator must support GPU
    return true;
  }
  for (auto& kern_pair : it->second) {
    if (platform::is_gpu_place(kern_pair.first.place_)) {
      return true;
    }
  }
  return false;
}

588 589
class RuntimeInferShapeContext : public InferShapeContext {
 public:
X
Xin Pan 已提交
590 591 592
  RuntimeInferShapeContext(const OperatorBase& op, const Scope& scope,
                           const RuntimeContext& ctx)
      : op_(op), scope_(scope), ctx_(ctx) {}
593 594

  bool HasInput(const std::string& name) const override {
595
    // has only one input
X
Xin Pan 已提交
596
    const auto& ins = ctx_.inputs;
597 598
    auto it = ins.find(name);
    if (it == ins.end()) {
599 600
      return false;
    }
601
    const auto& in = it->second;
X
Xin Pan 已提交
602
    if (in.size() == 0) return false;
T
tensor-tang 已提交
603
    PADDLE_ENFORCE_EQ(in.size(), 1UL,
F
fengjiayi 已提交
604
                      "Input %s should not have more than one inputs", name);
X
Xin Pan 已提交
605
    return in[0] != nullptr;
606 607 608
  }

  bool HasOutput(const std::string& name) const override {
609
    // has only one output
X
Xin Pan 已提交
610
    const auto& outs = ctx_.outputs;
611 612
    auto it = outs.find(name);
    if (it == outs.end()) {
613 614
      return false;
    }
615
    const auto& out = it->second;
X
Xin Pan 已提交
616
    if (out.size() == 0) {
617 618
      return false;
    }
T
tensor-tang 已提交
619 620
    PADDLE_ENFORCE_EQ(out.size(), 1UL,
                      "Output %s should not have more than one outputs", name);
X
Xin Pan 已提交
621
    return out[0] != nullptr;
622 623 624
  }

  bool HasInputs(const std::string& name) const override {
X
Xin Pan 已提交
625 626
    const auto& ins = ctx_.inputs;
    auto it = ins.find(name);
X
fix  
Xin Pan 已提交
627
    if (it == ins.end() || it->second.empty()) {
628 629
      return false;
    }
X
Xin Pan 已提交
630 631
    for (auto& input : it->second) {
      if (input == nullptr) {
632 633 634 635 636 637 638
        return false;
      }
    }
    return true;
  }

  bool HasOutputs(const std::string& name) const override {
X
Xin Pan 已提交
639 640
    const auto& outs = ctx_.outputs;
    auto it = outs.find(name);
X
fix  
Xin Pan 已提交
641
    if (it == outs.end() || it->second.empty()) {
642 643
      return false;
    }
X
Xin Pan 已提交
644 645
    for (auto& output : it->second) {
      if (output == nullptr) {
646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663
        return false;
      }
    }
    return true;
  }

  AttrReader Attrs() const override { return AttrReader(op_.Attrs()); }

  const std::vector<std::string>& Inputs(
      const std::string& name) const override {
    return op_.Inputs(name);
  }

  const std::vector<std::string>& Outputs(
      const std::string& name) const override {
    return op_.Outputs(name);
  }

664 665
  void ShareDim(const std::string& in, const std::string& out, size_t i = 0,
                size_t j = 0) override {
X
Xin Pan 已提交
666 667 668 669 670 671 672 673 674
    auto in_it = ctx_.inputs.find(in);
    auto out_it = ctx_.outputs.find(out);
    PADDLE_ENFORCE(in_it != ctx_.inputs.end() && in_it->second.size() > i,
                   "Inputs %s should have %llu argument", in, i);
    PADDLE_ENFORCE(out_it != ctx_.outputs.end() && out_it->second.size() > j,
                   "Outputs %s should have %llu argument", out, j);

    Variable* in_var = in_it->second[i];
    Variable* out_var = out_it->second[j];
675 676

    PADDLE_ENFORCE(in_var->Type() == out_var->Type(),
X
fix  
Xin Pan 已提交
677
                   "The type of %s and %s is not the same.", in, out);
678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695

    if (in_var->IsType<framework::SelectedRows>()) {
      auto& in_sele_rows = in_var->Get<framework::SelectedRows>();
      auto out_sele_rows = out_var->GetMutable<framework::SelectedRows>();
      out_sele_rows->mutable_value()->Resize(in_sele_rows.value().dims());
      out_sele_rows->set_rows(in_sele_rows.rows());
      out_sele_rows->set_height(in_sele_rows.height());
    } else if (in_var->IsType<framework::LoDTensor>()) {
      auto& in_lod_tensor = in_var->Get<framework::LoDTensor>();
      auto* out_lod_tensor = out_var->GetMutable<framework::LoDTensor>();
      out_lod_tensor->Resize(in_lod_tensor.dims());
    } else {
      PADDLE_THROW(
          "Currently, the input type of ShareDim only can be LoDTensor "
          "or SelectedRows.");
    }
  }

Q
Qiao Longfei 已提交
696 697
  void ShareLoD(const std::string& in, const std::string& out, size_t i = 0,
                size_t j = 0) const override {
X
Xin Pan 已提交
698 699 700 701 702 703 704 705
    auto in_it = ctx_.inputs.find(in);
    auto out_it = ctx_.outputs.find(out);
    PADDLE_ENFORCE(in_it != ctx_.inputs.end() && in_it->second.size() > i,
                   "Inputs %s should have %llu argument", in, i);
    PADDLE_ENFORCE(out_it != ctx_.outputs.end() && out_it->second.size() > j,
                   "Outputs %s should have %llu argument", out, j);

    Variable* in_var = in_it->second.at(i);
Q
Qiao Longfei 已提交
706
    if (!in_var->IsType<LoDTensor>()) return;
X
Xin Pan 已提交
707
    Variable* out_var = out_it->second.at(j);
Q
Qiao Longfei 已提交
708 709 710 711 712
    PADDLE_ENFORCE(out_var->IsType<LoDTensor>(),
                   "The %d-th output of Output(%s) must be LoDTensor.", j, out);
    auto in_tensor = in_var->Get<LoDTensor>();
    auto* out_tensor = out_var->GetMutable<LoDTensor>();
    out_tensor->set_lod(in_tensor.lod());
D
dzhwinter 已提交
713

M
mozga-intel 已提交
714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732
// TODO(dzhwinter) : reuse ShareLoD in most operators.
// Need to call ShareLayout explicitly in sequence related ops.
// Shall we have a better method to shared info between in/out Tensor?
#ifdef PADDLE_WITH_MKLDNN
    // Fix me: ugly workaround below
    // Correct solution:
    //    set_layout() should NOT be called here (i.e. ShareLoD). Instead,
    //    layout of output tensor should be set "manually" in Compute()
    //    of each OPKernel. The reason layout should NOT be shared between
    //    input and output "automatically" (now by InferShape()->ShareLoD())
    //    is that layout transform may occur after InferShape().
    // Workaround:
    //    Skip set_layout() when input layout is kMKLDNN
    //    This is to avoid kMKLDNN is populated wrongly into a non-MKLDNN
    //    OPKernel. In all MKLDNN OPkernel, set_layout(kMKLDNN) should be called
    //    in Compute()
    if (in_tensor.layout() != DataLayout::kMKLDNN)
#endif
      out_tensor->set_layout(in_tensor.layout());
D
dzhwinter 已提交
733 734
  }

C
chengduo 已提交
735 736 737 738 739
  void DecreaseLoDLevel(const std::string& in, const std::string& out,
                        size_t i = 0, size_t j = 0) const override {
    PADDLE_THROW("DecreaseLoDLevel is only used in compile time.");
  }

740 741
  bool IsRuntime() const override { return true; }

742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760
  // TODO(paddle-dev): Can this be template?
  std::vector<InferShapeVarPtr> GetInputVarPtrs(
      const std::string& name) override {
    const std::vector<Variable*>& vars = InputVars(name);
    std::vector<InferShapeVarPtr> res;
    res.reserve(vars.size());
    res.insert(res.begin(), vars.begin(), vars.end());
    return res;
  }

  std::vector<InferShapeVarPtr> GetOutputVarPtrs(
      const std::string& name) override {
    const std::vector<Variable*>& vars = OutputVars(name);
    std::vector<InferShapeVarPtr> res;
    res.reserve(vars.size());
    res.insert(res.begin(), vars.begin(), vars.end());
    return res;
  }

X
Xin Pan 已提交
761 762 763 764 765 766 767 768 769 770 771 772 773
  DDim GetInputDim(const std::string& name) const override {
    const std::vector<Variable*>& vars = InputVars(name);
    PADDLE_ENFORCE_EQ(vars.size(), 1UL,
                      "Input(%s) should hold one element, but now it holds %d",
                      name, vars.size());
    return this->GetDim(vars[0]);
  }

  std::vector<DDim> GetInputsDim(const std::string& name) const override {
    const std::vector<Variable*>& vars = InputVars(name);
    return GetDims(vars);
  }

X
Xin Pan 已提交
774 775 776 777 778 779 780 781 782 783
  std::vector<proto::VarType::Type> GetInputsVarType(
      const std::string& name) const override {
    return GetVarTypes(InputVars(name));
  }

  std::vector<proto::VarType::Type> GetOutputsVarType(
      const std::string& name) const override {
    return GetVarTypes(OutputVars(name));
  }

X
Xin Pan 已提交
784 785 786 787 788 789 790 791 792 793 794 795 796 797
  void SetOutputDim(const std::string& name, const DDim& dim) override {
    auto& vars = OutputVars(name);
    PADDLE_ENFORCE_EQ(vars.size(), 1UL,
                      "Output(%s) should hold one element, but now it holds %d",
                      name, vars.size());
    SetDim(vars[0], dim);
  }

  void SetOutputsDim(const std::string& name,
                     const std::vector<DDim>& dims) override {
    auto& vars = OutputVars(name);
    SetDims(vars, dims);
  }

798
 protected:
X
Xin Pan 已提交
799
  DDim GetDim(Variable* var) const {
F
fengjiayi 已提交
800
    PADDLE_ENFORCE_NOT_NULL(var);
801 802 803 804 805
    if (var->IsType<LoDTensor>()) {
      return var->Get<LoDTensor>().dims();
    } else if (var->IsType<SelectedRows>()) {
      return var->Get<SelectedRows>().GetCompleteDims();
    } else {
F
fengjiayi 已提交
806
      PADDLE_THROW(
X
Xin Pan 已提交
807
          "Only LoDTensor/SelectedRows support 'GetDim', but Variables "
F
fengjiayi 已提交
808
          "type_id is %s.",
S
sneaxiy 已提交
809
          ToTypeName(var->Type()));
F
fengjiayi 已提交
810 811 812
    }
  }

X
Xin Pan 已提交
813 814 815 816 817 818 819 820
  std::vector<DDim> GetDims(const std::vector<Variable*>& vars) const {
    std::vector<DDim> ret;
    ret.reserve(vars.size());
    std::transform(vars.begin(), vars.end(), std::back_inserter(ret),
                   [this](Variable* var) { return this->GetDim(var); });
    return ret;
  }

F
fengjiayi 已提交
821
  std::vector<DDim> GetRepeatedDims(const std::string& name) const override {
Y
Yu Yang 已提交
822
    PADDLE_THROW("Only compile time support this method");
823 824
  }

X
Xin Pan 已提交
825
  void SetDim(Variable* var, const DDim& dim) {
826 827 828 829 830
    if (var->IsType<LoDTensor>()) {
      var->GetMutable<LoDTensor>()->Resize(dim);
    } else if (var->IsType<SelectedRows>()) {
      var->GetMutable<SelectedRows>()->set_height(dim[0]);
    } else {
X
Xin Pan 已提交
831
      PADDLE_THROW("Variable type_id %s, expect LoDTensor/SelectedRows.",
S
sneaxiy 已提交
832
                   ToTypeName(var->Type()));
X
Xin Pan 已提交
833 834 835 836 837 838 839 840 841 842 843 844
    }
  }

  void SetDims(const std::vector<Variable*>& vars,
               const std::vector<DDim>& dims) {
    size_t length = vars.size();
    PADDLE_ENFORCE_EQ(length, dims.size());
    for (size_t i = 0; i < length; ++i) {
      if (vars[i] == nullptr) {
        continue;
      }
      SetDim(vars[i], dims[i]);
845 846 847
    }
  }

F
fengjiayi 已提交
848 849
  void SetRepeatedDims(const std::string& name,
                       const std::vector<DDim>& dims) override {
Y
Yu Yang 已提交
850
    PADDLE_THROW("Only compile time support this method");
F
fengjiayi 已提交
851 852
  }

X
Xin Pan 已提交
853 854 855 856 857 858 859 860 861 862 863
  std::vector<proto::VarType::Type> GetVarTypes(
      const std::vector<Variable*>& vars) const {
    std::vector<proto::VarType::Type> retv;
    retv.resize(vars.size());
    std::transform(vars.begin(), vars.end(), retv.begin(),
                   std::bind(std::mem_fn(&RuntimeInferShapeContext::GetVarType),
                             this, std::placeholders::_1));
    return retv;
  }

  proto::VarType::Type GetVarType(Variable* var) const {
864 865 866
    return ToVarType(var->Type());
  }

867 868 869 870 871 872 873 874 875 876 877 878 879 880
 private:
  const std::vector<Variable*>& InputVars(const std::string& name) const {
    auto it = ctx_.inputs.find(name);
    PADDLE_ENFORCE(it != ctx_.inputs.end(),
                   "Operator %s does not have the input %s.", op_.Type(), name);
    return it->second;
  }

  const std::vector<Variable*>& OutputVars(const std::string& name) const {
    auto it = ctx_.outputs.find(name);
    PADDLE_ENFORCE(it != ctx_.outputs.end(),
                   "Operator %s does not have the outputs %s.", op_.Type(),
                   name);
    return it->second;
F
fengjiayi 已提交
881 882
  }

883 884
  const OperatorBase& op_;
  const Scope& scope_;
X
Xin Pan 已提交
885
  const RuntimeContext& ctx_;
886 887
};

C
chengduoZH 已提交
888 889 890 891 892
static void CheckTensorNANOrInf(const std::string& name,
                                const framework::Tensor& tensor) {
  if (tensor.memory_size() == 0) {
    return;
  }
Y
Yu Yang 已提交
893 894
  if (tensor.type() != proto::VarType::FP32 &&
      tensor.type() != proto::VarType::FP64) {
C
chengduoZH 已提交
895 896 897 898 899 900 901 902
    return;
  }
  PADDLE_ENFORCE(!framework::TensorContainsInf(tensor),
                 "Tensor %s contains Inf", name);
  PADDLE_ENFORCE(!framework::TensorContainsNAN(tensor),
                 "Tensor %s contains NAN", name);
}

B
baojun-nervana 已提交
903
void OperatorWithKernel::RuntimeInferShape(const Scope& scope,
X
Xin Pan 已提交
904 905 906
                                           const platform::Place& place,
                                           const RuntimeContext& ctx) const {
  RuntimeInferShapeContext infer_shape_ctx(*this, scope, ctx);
B
baojun-nervana 已提交
907 908 909
  this->InferShape(&infer_shape_ctx);
}

910 911
void OperatorWithKernel::RunImpl(const Scope& scope,
                                 const platform::Place& place) const {
X
Xin Pan 已提交
912
  RuntimeContext ctx(Inputs(), Outputs(), scope);
Y
Yu Yang 已提交
913
  platform::DeviceContextPool& pool = platform::DeviceContextPool::Instance();
914
  auto* dev_ctx = pool.Get(place);
915

916 917 918 919
  // check if op[type] has kernel registered.
  auto& all_op_kernels = AllOpKernels();
  auto kernels_iter = all_op_kernels.find(type_);
  if (kernels_iter == all_op_kernels.end()) {
Y
Yu Yang 已提交
920 921
    PADDLE_THROW(
        "There are no kernels which are registered in the %s operator.", type_);
922 923
  }

Q
qiaolongfei 已提交
924 925
  OpKernelMap& kernels = kernels_iter->second;

X
Xin Pan 已提交
926 927
  auto expected_kernel_key = this->GetExpectedKernelType(
      ExecutionContext(*this, scope, *dev_ctx, ctx));
M
minqiyang 已提交
928
  VLOG(3) << "expected_kernel_key:" << expected_kernel_key;
Q
qiaolongfei 已提交
929

930
  auto kernel_iter = kernels.find(expected_kernel_key);
931
#ifdef PADDLE_WITH_MKLDNN
P
Paweł Żelazko 已提交
932
  // workaround for missing MKLDNN kernel when FLAGS_use_mkldnn env var is set
933 934
  if (kernel_iter == kernels.end() &&
      expected_kernel_key.library_type_ == LibraryType::kMKLDNN) {
M
minqiyang 已提交
935
    VLOG(3) << "missing MKLDNN kernel: fallbacking to PLAIN one";
936 937 938 939 940
    expected_kernel_key.library_type_ = LibraryType::kPlain;
    expected_kernel_key.data_layout_ = DataLayout::kAnyLayout;
    kernel_iter = kernels.find(expected_kernel_key);
  }
#endif
941 942 943 944 945
  if (kernel_iter == kernels.end()) {
    PADDLE_THROW("op %s does not have kernel for %s", type_,
                 KernelTypeToString(expected_kernel_key));
  }

Y
yuyang18 已提交
946 947 948
  // do data transformScope &transfer_scope;
  std::vector<std::string> transfered_inplace_vars;
  auto* transfer_scope =
X
Xin Pan 已提交
949
      PrepareData(scope, expected_kernel_key, &transfered_inplace_vars, &ctx);
950

Y
yuyang18 已提交
951 952 953 954 955 956
  // exec scope is the scope that kernel actually executed on.
  const Scope& exec_scope =
      (transfer_scope == nullptr ? scope : *transfer_scope);

  if (!(expected_kernel_key.place_ == dev_ctx->GetPlace())) {
    dev_ctx = pool.Get(expected_kernel_key.place_);
957
  }
Q
QI JUN 已提交
958

X
Xin Pan 已提交
959
  RuntimeInferShapeContext infer_shape_ctx(*this, exec_scope, ctx);
X
Xin Pan 已提交
960
  this->InferShape(&infer_shape_ctx);
X
clean  
Xin Pan 已提交
961 962
  // TODO(panyx0718): ExecutionContext should only depend on RuntimeContext
  // not Scope. Imperative mode only pass inputs and get outputs.
X
Xin Pan 已提交
963
  kernel_iter->second(ExecutionContext(*this, exec_scope, *dev_ctx, ctx));
D
dzhwinter 已提交
964

Y
yuyang18 已提交
965 966 967
  if (!transfered_inplace_vars.empty()) {
    // there is inplace variable has been transfered.
    TransferInplaceVarsBack(scope, transfered_inplace_vars, *transfer_scope);
968 969
  }

D
dzhwinter 已提交
970
  /*For profiling/benchmark only*/
D
dzhwinter 已提交
971
  if (FLAGS_benchmark) {
Y
yuyang18 已提交
972
    dev_ctx->Wait();
D
dzhwinter 已提交
973
  }
C
chengduoZH 已提交
974 975 976

  if (FLAGS_check_nan_inf) {
    for (auto& vname : OutputVars(true)) {
Y
yuyang18 已提交
977
      auto* var = exec_scope.FindVar(vname);
C
chengduoZH 已提交
978 979 980
      if (var == nullptr) continue;
      if (var->IsType<framework::LoDTensor>()) {
        CheckTensorNANOrInf(vname, var->Get<framework::LoDTensor>());
981 982
      } else if (var->IsType<framework::SelectedRows>()) {
        CheckTensorNANOrInf(vname, var->Get<framework::SelectedRows>().value());
C
chengduoZH 已提交
983 984 985
      }
    }
  }
Q
Qiao Longfei 已提交
986
}
X
Xin Pan 已提交
987

Y
yuyang18 已提交
988 989 990 991
void OperatorWithKernel::TransferInplaceVarsBack(
    const Scope& scope, const std::vector<std::string>& inplace_vars,
    const Scope& transfer_scope) const {
  for (auto& var_name : inplace_vars) {
M
minqiyang 已提交
992
    VLOG(3) << "share inplace var " + var_name + " back to it's original scope";
C
chengduo 已提交
993 994
    auto* original_tensor =
        GetMutableLoDTensorOrSelectedRowsValueFromVar(scope.FindVar(var_name));
C
chengduo 已提交
995 996 997
    auto* var = transfer_scope.FindVar(var_name);
    PADDLE_ENFORCE(var != nullptr, "The var[%s] should not be nullptr",
                   var_name);
C
chengduo 已提交
998
    auto* transformed_tensor = GetLoDTensorOrSelectedRowsValueFromVar(*var);
Y
yuyang18 已提交
999 1000 1001 1002
    original_tensor->ShareDataWith(*transformed_tensor);
  }
}

X
Xin Pan 已提交
1003
Scope* OperatorWithKernel::PrepareData(
Y
yuyang18 已提交
1004
    const Scope& scope, const OpKernelType& expected_kernel_key,
X
Xin Pan 已提交
1005 1006
    std::vector<std::string>* transfered_inplace_vars,
    RuntimeContext* ctx) const {
Y
yuyang18 已提交
1007 1008
  Scope* new_scope = nullptr;
  for (auto& var_name_item : Inputs()) {
X
Xin Pan 已提交
1009 1010 1011 1012
    std::vector<Variable*>& input_vars = ctx->inputs[var_name_item.first];

    for (size_t i = 0; i < var_name_item.second.size(); ++i) {
      auto& var_name = var_name_item.second[i];
X
Xin Pan 已提交
1013
      auto* var = input_vars[i];
X
Xin Pan 已提交
1014

Y
yuyang18 已提交
1015
      // Only tensor can be tranfer to another device.
C
chengduo 已提交
1016
      if (var == nullptr || !VarIsTensor(*var)) {
Y
yuyang18 已提交
1017 1018 1019
        continue;
      }

C
chengduo 已提交
1020
      auto* tensor_in = GetLoDTensorOrSelectedRowsValueFromVar(*var);
Y
yuyang18 已提交
1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037
      if (!tensor_in->IsInitialized()) {
        continue;
      }

      auto kernel_type_for_var = GetKernelTypeForVar(
          var_name_item.first, *tensor_in, expected_kernel_key);

      if (!NeedTransform(kernel_type_for_var, expected_kernel_key)) {
        continue;
      }

      auto out_var_names = OutputVars(true);
      if (std::find(out_var_names.begin(), out_var_names.end(), var_name) !=
          out_var_names.end()) {
        transfered_inplace_vars->emplace_back(var_name);
      }

M
minqiyang 已提交
1038 1039
      VLOG(3) << "Transform Variable " << var_name << " from "
              << kernel_type_for_var << " to " << expected_kernel_key;
Y
yuyang18 已提交
1040

1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055
      // In the inference scenerio, the scopes will be reused across the
      // batches, so the `new_scope` here will result in GPU memroy explosion
      // over the  running of operators.
      // We use a thread_local cache to fix that issue, the key in the cache is
      // the combination of the `scope` argument, from_kernel_type,
      // target_kernel_type.
      // Have a discussion with @Superjomn or the inference developers if some
      // changes on this logic for this macro might not tested on the other
      // scenerios.
      // If this op is not called by an Executor or ParallelExecutor, it should
      // called by a NaiveExecutor, the NaiveExecutor will cache the scopes and
      // variables, that behavior a lot different.
      if (!run_by_executor_) {
        new_scope = TryCreateTransferScope(kernel_type_for_var,
                                           expected_kernel_key, &scope);
1056
      }
1057
      if (!new_scope) {
Y
yuyang18 已提交
1058 1059 1060 1061
        new_scope = &scope.NewScope();
      }

      auto* trans_var = new_scope->Var(var_name);
X
fix  
Xin Pan 已提交
1062
      input_vars[i] = trans_var;
1063

Y
yuyang18 已提交
1064
      Tensor out;
Y
yuyang18 已提交
1065
      TransformData(expected_kernel_key, kernel_type_for_var, *tensor_in, &out);
Y
yuyang18 已提交
1066 1067 1068 1069 1070 1071
      SetTensorToVariable(*var, out, trans_var);
    }
  }

  return new_scope;
}
Q
Qiao Longfei 已提交
1072

1073
proto::VarType::Type OperatorWithKernel::IndicateDataType(
Y
Yu Yang 已提交
1074
    const ExecutionContext& ctx) const {
1075 1076
  proto::VarType::Type defaut_data_type = static_cast<proto::VarType::Type>(-1);
  proto::VarType::Type data_type = defaut_data_type;
Y
Yu Yang 已提交
1077
  for (auto& input : this->inputs_) {
X
Xin Pan 已提交
1078 1079 1080
    const std::vector<const Variable*> vars = ctx.MultiInputVar(input.first);
    for (size_t i = 0; i < vars.size(); ++i) {
      const Variable* var = vars[i];
Y
Yu Yang 已提交
1081 1082 1083 1084 1085 1086 1087 1088 1089 1090
      if (var != nullptr) {
        const Tensor* t = nullptr;
        if (var->IsType<Tensor>()) {
          t = &var->Get<Tensor>();
        } else if (var->IsType<LoDTensor>()) {
          t = &var->Get<LoDTensor>();
        } else if (var->IsType<SelectedRows>()) {
          t = &(var->Get<SelectedRows>().value());
        }
        if (t != nullptr) {
X
Xin Pan 已提交
1091 1092
          PADDLE_ENFORCE(t->IsInitialized(), "Input %s(%lu)is not initialized",
                         input.first, i);
1093
          proto::VarType::Type tmp = t->type();
1094
          PADDLE_ENFORCE(
1095
              tmp == data_type || data_type == defaut_data_type,
X
Xin Pan 已提交
1096
              "DataType of Paddle Op %s must be the same. Get (%d) != (%d)",
1097
              Type(), DataTypeToString(data_type), DataTypeToString(tmp));
Y
Yu Yang 已提交
1098 1099 1100 1101 1102
          data_type = tmp;
        }
      }
    }
  }
1103 1104 1105
  PADDLE_ENFORCE(data_type != defaut_data_type,
                 "DataType should be indicated by input");
  return data_type;
Y
Yu Yang 已提交
1106
}
1107

1108 1109 1110 1111 1112 1113 1114 1115
OpKernelType OperatorWithKernel::GetExpectedKernelType(
    const ExecutionContext& ctx) const {
  return OpKernelType(IndicateDataType(ctx), ctx.GetPlace());
}

OpKernelType OperatorWithKernel::GetKernelTypeForVar(
    const std::string& var_name, const Tensor& tensor,
    const OpKernelType& expected_kernel_type) const {
M
mozga-intel 已提交
1116 1117
  return OpKernelType(expected_kernel_type.data_type_, tensor.place(),
                      tensor.layout());
1118 1119
}

Q
Qiao Longfei 已提交
1120
}  // namespace framework
L
liaogang 已提交
1121
}  // namespace paddle