softmax_with_cross_entropy_op.cc 8.3 KB
Newer Older
1 2 3 4 5 6
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

   Licensed under the Apache License, Version 2.0 (the "License");
   you may not use this file except in compliance with the License.
   You may obtain a copy of the License at

C
caoying03 已提交
7
http://www.apache.org/licenses/LICENSE-2.0
8

C
caoying03 已提交
9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
14 15

#include "paddle/operators/softmax_with_cross_entropy_op.h"
Y
Yu Yang 已提交
16
#include <paddle/function/TensorType.h>
Y
Yu Yang 已提交
17 18
#include <iostream>

19 20 21 22 23 24
namespace paddle {
namespace operators {

class SoftmaxWithCrossEntropyOpMaker
    : public framework::OpProtoAndCheckerMaker {
 public:
25 26
  SoftmaxWithCrossEntropyOpMaker(framework::OpProto* proto,
                                 framework::OpAttrChecker* op_checker)
27
      : OpProtoAndCheckerMaker(proto, op_checker) {
C
caoying03 已提交
28
    AddInput("Logits",
29
             "(Tensor, default: Tensor<float>), The unscaled log probabilities "
C
caoying03 已提交
30
             "which is a 2-D tensor with shape [N x K]. N is the batch_size, "
31 32
             "and K is the class number.");
    AddInput("Label",
C
caoying03 已提交
33 34 35 36
             "(Tensor) The ground truth which is a 2-D tensor. If soft_label "
             "is set to false, Label is a Tensor<int64> with shape [N x 1]. If "
             "soft_label is set to true, Label is a Tensor<float/double> with "
             "shape [N x K].");
C
caoying03 已提交
37 38
    AddOutput(
        "Softmax",
39
        "(Tensor, default: Tensor<float>), A 2-D tensor with shape [N x K]. "
C
caoying03 已提交
40 41
        "The outputs value of softmax activation by given the input batch, "
        "which will be used in backward calculation.")
C
caoying03 已提交
42
        .AsIntermediate();
C
caoying03 已提交
43
    AddOutput("Loss",
44
              "(Tensor, default: Tensor<float>), A 2-D tensor. The cross "
C
caoying03 已提交
45
              "entropy loss with shape [N x 1].");
C
caoying03 已提交
46
    AddAttr<bool>(
47
        "soft_label",
C
caoying03 已提交
48 49 50
        "(bool, default: false), A flag to indicate whether to interpretate "
        "the given labels as soft labels.")
        .SetDefault(false);
51
    AddComment(R"DOC(
52 53 54
Softmax With Cross Entropy Operator.

Cross entropy loss with softmax is used as the output layer extensively. This
55
operator computes the softmax normalized values for each row of the input
56
tensor, after which cross-entropy loss is computed. This provides a more
57 58
numerically stable gradient.

59 60 61
Because this operator performs a softmax on logits internally, it expects
unscaled logits. This operator should not be used with the output of
softmax operator since that would produce incorrect results.
62

C
caoying03 已提交
63
When the attribute soft_label is set false, this operators expects mutually
64 65
exclusive hard labels, each sample in a batch is in exactly one class with a
probability of 1.0. Each sample in the batch will have a single label.
66

67
The equation is as follows:
68

69
1) Hard label (one-hot label, so every sample has exactly one class)
70

71
$$Loss_j = \f$ -\text{Logit}_{Label_j} +
72
\log\left(\sum_{i=0}^{K}\exp(\text{Logit}_i)\right),
73
j = 1, ..., K $\f$$
C
caoying03 已提交
74

75
2) Soft label (each sample can have a distribution over all classes)
C
caoying03 已提交
76

77
$$Loss_j = \f$ -\sum_{i=0}^{K}\text{Label}_i\left(\text{Logit}_i -
78
\log\left(\sum_{i=0}^{K}\exp(\text{Logit}_i)\right)\right),
79
j = 1,...,K $\f$$
C
caoying03 已提交
80 81

)DOC");
82 83 84 85 86 87 88
  }
};

class SoftmaxWithCrossEntropyOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

89
  void InferShape(framework::InferShapeContext* ctx) const override {
Q
qiaolongfei 已提交
90 91 92 93 94 95 96 97 98 99
    PADDLE_ENFORCE(ctx->HasInput("Logits"),
                   "Input(Logits) should be not null.");
    PADDLE_ENFORCE(ctx->HasInput("Label"), "Input(Label) should be not null.");

    PADDLE_ENFORCE(ctx->HasOutput("Softmax"),
                   "Output(Softmax) should be not null.");
    PADDLE_ENFORCE(ctx->HasOutput("Loss"), "Output(Loss) should be not null.");

    auto logits_dims = ctx->GetInputDim("Logits");
    auto labels_dims = ctx->GetInputDim("Label");
C
caoying03 已提交
100
    PADDLE_ENFORCE_EQ(
Q
qiaolongfei 已提交
101
        logits_dims.size(), 2UL,
102
        "The input of softmax_with_cross_entropy should be a 2-D tensor.");
Q
qiaolongfei 已提交
103
    PADDLE_ENFORCE_EQ(labels_dims.size(), 2UL,
C
caoying03 已提交
104
                      "The labels should be a 2-D tensor.");
105

106
    if (ctx->Attrs().Get<bool>("soft_label")) {
Q
qiaolongfei 已提交
107
      PADDLE_ENFORCE_EQ(logits_dims[1], labels_dims[1],
108
                        "If Attr(soft_label) == true, the 2nd dimension of "
109 110
                        "Input(X) and Input(Label) should be equal.");
    } else {
Q
qiaolongfei 已提交
111
      PADDLE_ENFORCE_EQ(labels_dims[1], 1UL,
112
                        "If Attr(soft_label) == false, the 2nd dimension of "
113 114 115
                        "Input(Label) should be 1.");
    }

Q
qiaolongfei 已提交
116 117
    ctx->SetOutputDim("Softmax", logits_dims);
    ctx->SetOutputDim("Loss", {logits_dims[0], 1});
118

Q
qiaolongfei 已提交
119 120
    ctx->ShareLoD("Logits", /*->*/ "Softmax");
    ctx->ShareLoD("Logits", /*->*/ "Loss");
C
caoying03 已提交
121
  }
Y
Yu Yang 已提交
122

123
 protected:
Y
Yu Yang 已提交
124
  framework::OpKernelType GetKernelType(
Y
Yu Yang 已提交
125
      const framework::ExecutionContext& ctx) const override {
Y
Yu Yang 已提交
126 127 128
    return framework::OpKernelType(
        framework::ToDataType(ctx.Input<Tensor>("Logits")->type()),
        ctx.device_context());
Y
Yu Yang 已提交
129
  }
C
caoying03 已提交
130 131 132 133 134 135
};

class SoftmaxWithCrossEntropyOpGrad : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

136
  void InferShape(framework::InferShapeContext* ctx) const override {
Q
qiaolongfei 已提交
137 138 139 140 141 142 143 144 145 146 147
    PADDLE_ENFORCE(ctx->HasInput(framework::GradVarName("Loss")),
                   "Input(Loss@Grad) should not be null.");
    PADDLE_ENFORCE(ctx->HasInput("Softmax"),
                   "Input(Softmax) should be not null.");
    PADDLE_ENFORCE(ctx->HasInput("Label"), "Input(Label) should be not null.");
    PADDLE_ENFORCE(ctx->HasOutput(framework::GradVarName("Logits")),
                   "Output(Logits@Grad) should be not null.");

    auto softmax_dims = ctx->GetInputDim("Softmax");
    auto labels_dims = ctx->GetInputDim("Label");
    PADDLE_ENFORCE_EQ(labels_dims.size(), 2UL,
C
caoying03 已提交
148
                      "The labels should be a 2-D tensor.");
149

150
    if (ctx->Attrs().Get<bool>("soft_label")) {
Q
qiaolongfei 已提交
151
      PADDLE_ENFORCE_EQ(softmax_dims[1], labels_dims[1],
152
                        "When Attr(soft_label) == true, the 2nd dimension of "
153 154
                        "Input(X) and Input(Label) should be equal.");
    } else {
Q
qiaolongfei 已提交
155
      PADDLE_ENFORCE_EQ(labels_dims[1], 1UL,
156
                        "When Attr(soft_label) == false, the 2nd dimension of "
157 158
                        "Input(Label) should be 1.");
    }
C
caoying03 已提交
159

Q
qiaolongfei 已提交
160 161
    ctx->SetOutputDim(framework::GradVarName("Logits"),
                      ctx->GetInputDim("Softmax"));
162
  }
Y
Yu Yang 已提交
163

164
 protected:
Y
Yu Yang 已提交
165
  framework::OpKernelType GetKernelType(
Y
Yu Yang 已提交
166
      const framework::ExecutionContext& ctx) const override {
Y
Yu Yang 已提交
167 168 169 170
    return framework::OpKernelType(
        framework::ToDataType(
            ctx.Input<Tensor>(framework::GradVarName("Loss"))->type()),
        ctx.device_context());
Y
Yu Yang 已提交
171
  }
172 173
};

174 175 176 177 178
class SoftmaxGradMaker : public framework::SingleGradOpDescMaker {
 public:
  using framework::SingleGradOpDescMaker::SingleGradOpDescMaker;

 protected:
Y
Yu Yang 已提交
179 180 181 182 183 184 185 186 187 188 189
  std::unique_ptr<framework::OpDescBind> Apply() const override {
    auto* grad_op = new framework::OpDescBind();
    grad_op->SetType("softmax_with_cross_entropy_grad");
    grad_op->SetInput("Label", Input("Label"));
    grad_op->SetInput("Softmax", Output("Softmax"));
    grad_op->SetInput("Loss", Output("Loss"));
    grad_op->SetInput(framework::GradVarName("Softmax"), OutputGrad("Softmax"));
    grad_op->SetInput(framework::GradVarName("Loss"), OutputGrad("Loss"));
    grad_op->SetOutput(framework::GradVarName("Logits"), InputGrad("Logits"));
    grad_op->SetAttrMap(Attrs());
    return std::unique_ptr<framework::OpDescBind>(grad_op);
190 191 192
  }
};

193 194 195 196 197
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;

198
REGISTER_OPERATOR(softmax_with_cross_entropy, ops::SoftmaxWithCrossEntropyOp,
Y
Yu Yang 已提交
199
                  ops::SoftmaxWithCrossEntropyOpMaker, ops::SoftmaxGradMaker);
200 201
REGISTER_OPERATOR(softmax_with_cross_entropy_grad,
                  ops::SoftmaxWithCrossEntropyOpGrad);
202
REGISTER_OP_CPU_KERNEL(softmax_with_cross_entropy,
C
caoying03 已提交
203 204
                       ops::SoftmaxWithCrossEntropyKernel<float>,
                       ops::SoftmaxWithCrossEntropyKernel<double>);
205
REGISTER_OP_CPU_KERNEL(softmax_with_cross_entropy_grad,
C
caoying03 已提交
206 207
                       ops::SoftmaxWithCrossEntropyGradKernel<float>,
                       ops::SoftmaxWithCrossEntropyGradKernel<double>);