softmax_with_cross_entropy_op.cc 6.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

   Licensed under the Apache License, Version 2.0 (the "License");
   you may not use this file except in compliance with the License.
   You may obtain a copy of the License at

   http://www.apache.org/licenses/LICENSE-2.0

   Unless required by applicable law or agreed to in writing, software
   distributed under the License is distributed on an "AS IS" BASIS,
   WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
   See the License for the specific language governing permissions and
   limitations under the License. */

#include "paddle/operators/softmax_with_cross_entropy_op.h"

namespace paddle {
namespace operators {

class SoftmaxWithCrossEntropyOpMaker
    : public framework::OpProtoAndCheckerMaker {
 public:
23 24
  SoftmaxWithCrossEntropyOpMaker(framework::OpProto* proto,
                                 framework::OpAttrChecker* op_checker)
25
      : OpProtoAndCheckerMaker(proto, op_checker) {
26 27 28 29 30
    AddAttr<bool>(
        "softLabel",
        "(bool, default: false), A flag to indicate whether to interpretate "
        "the given labels as soft labels.")
        .SetDefault(false);
C
caoying03 已提交
31
    AddInput("Logits",
32
             "(Tensor, default: Tensor<float>), The unscaled log probabilities "
C
caoying03 已提交
33 34
             "which is a 2-D tensor with shape [N x K]. N is the batch_size, "
             "and K is the class number.")
35
        .NotInGradient();
C
caoying03 已提交
36 37
    AddInput(
        "Label",
38 39 40 41
        "(Tensor, default: Tensor<int>), The ground truth which is a 2-D "
        "tensor. "
        "If softLable is set to 0, Label is a Tensor<int> with shape [N x 1]. "
        "If softLable is set to 1, Label is a Tensor<float/double> "
C
caoying03 已提交
42 43 44
        "with shape [N x K].");
    AddOutput(
        "Softmax",
45
        "(Tensor, default: Tensor<float>), A 2-D tensor with shape [N x K]. "
C
caoying03 已提交
46 47
        "The outputs value of softmax activation by given the input batch, "
        "which will be used in backward calculation.")
C
caoying03 已提交
48
        .AsIntermediate();
C
caoying03 已提交
49
    AddOutput("Loss",
50
              "(Tensor, default: Tensor<float>), A 2-D tensor. The cross "
C
caoying03 已提交
51
              "entropy loss with shape [N x 1].");
52 53 54 55 56 57 58 59 60 61 62 63 64 65
    AddComment(R"DOC(
Cross entropy loss with softmax are used as the output layer extensively. This
operator computes the softmax normalized values for each row of the input
tensor, after which cross-entropy loss is then computed. This provides a more
numerically stable gradient.

Because this operators performs a softmax on logits internally, it expects
unscaled logits. Please do not call this op with the output of softmax operator,
which will produce incorrect results.

This operators expects mutually exclusive hard labels, each sample in a batch
is in exactly one class with probabilities 1. Each sample in the batch with one
and only one label.

C
caoying03 已提交
66
Equation:
67

C
caoying03 已提交
68
1) hard label (one-hot label)
69

C
caoying03 已提交
70 71 72 73 74 75 76
Loss_j = -\text{Logit}_{Label_j} + \log\left(\sum_{i=0}^{K}\exp(\text{Logit}_i)\right), j = 1, ..., K

2) soft label (a distribution over all classes)

Loss_j = -\sum_{i=0}^{K}\text{Label}_i\left(\text{Logit}_i-\log\left(\sum_{i=0}^{K}\exp(\text{Logit}_i)\right)\right), j = 1,...,K

)DOC");
77 78 79 80 81 82 83 84 85
  }
};

class SoftmaxWithCrossEntropyOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

 protected:
  void InferShape(const framework::InferShapeContext& ctx) const override {
86 87 88 89 90 91 92 93 94 95
    PADDLE_ENFORCE_NOT_NULL(ctx.InputVar("Logits"),
                            "Input(Logits) should be not null.");
    PADDLE_ENFORCE_NOT_NULL(ctx.InputVar("Label"),
                            "Input(Label) should be not null.");

    PADDLE_ENFORCE_NOT_NULL(ctx.OutputVar("Softmax"),
                            "Output(Softmax) should be not null.");
    PADDLE_ENFORCE_NOT_NULL(ctx.OutputVar("Loss"),
                            "Output(Loss) should be not null.");

96
    const Tensor* logits = ctx.Input<Tensor>("Logits");
97
    const Tensor* labels = ctx.Input<Tensor>("Label");
98 99
    PADDLE_ENFORCE(
        logits->dims().size() == 2UL,
100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118
        "The input of softmax_with_cross_entropy should be a 2-D tensor.");
    PADDLE_ENFORCE(ctx.Input<Tensor>("Label")->dims().size() == 2UL,
                   "The labels should be a 2-D tensor.");

    if (ctx.Attr<bool>("softLabel")) {
      PADDLE_ENFORCE_EQ(logits->dims()[1], labels->dims()[1],
                        "If Attr(softLabel) == true, the 2nd dimension of "
                        "Input(X) and Input(Label) should be equal.");
    } else {
      PADDLE_ENFORCE_EQ(labels->dims()[1], 1,
                        "If Attr(softLabel) == false, the 2nd dimension of "
                        "Input(Label) should be 1.");
    }

    ctx.Output<framework::Tensor>("Softmax")->Resize(logits->dims());
    ctx.Output<framework::Tensor>("Loss")->Resize({logits->dims()[0], 1});

    ctx.ShareLoD("Logits", /*->*/ "Softmax");
    ctx.ShareLoD("Logits", /*->*/ "Loss");
C
caoying03 已提交
119 120 121 122 123 124 125 126 127 128
  }
};

class SoftmaxWithCrossEntropyOpGrad : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

 protected:
  void InferShape(const framework::InferShapeContext& ctx) const override {
    PADDLE_ENFORCE_NOT_NULL(ctx.InputVar(framework::GradVarName("Loss")),
129
                            "Input(Loss@Grad) should not be null.");
C
caoying03 已提交
130 131 132 133
    PADDLE_ENFORCE_NOT_NULL(ctx.InputVar("Softmax"),
                            "Input(Softmax) should be not null.");
    PADDLE_ENFORCE_NOT_NULL(ctx.InputVar("Label"),
                            "Input(Lable) should be not null.");
134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150
    PADDLE_ENFORCE_NOT_NULL(ctx.OutputVar(framework::GradVarName("Logits")),
                            "Output(Logits@Grad) should be not null.");

    const Tensor* softmax = ctx.Input<Tensor>("Softmax");
    const Tensor* labels = ctx.Input<Tensor>("Label");
    PADDLE_ENFORCE(ctx.Input<Tensor>("Label")->dims().size() == 2UL,
                   "The labels should be a 2-D tensor.");

    if (ctx.Attr<bool>("softLabel")) {
      PADDLE_ENFORCE_EQ(softmax->dims()[1], labels->dims()[1],
                        "When Attr(softLabel) == true, the 2nd dimension of "
                        "Input(X) and Input(Label) should be equal.");
    } else {
      PADDLE_ENFORCE_EQ(labels->dims()[1], 1,
                        "When Attr(softLabel) == false, the 2nd dimension of "
                        "Input(Label) should be 1.");
    }
C
caoying03 已提交
151 152 153

    ctx.Output<framework::LoDTensor>(framework::GradVarName("Logits"))
        ->Resize(ctx.Input<Tensor>("Softmax")->dims());
154 155 156 157 158 159 160 161 162 163 164 165
  }
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;

REGISTER_OP(softmax_with_cross_entropy, ops::SoftmaxWithCrossEntropyOp,
            ops::SoftmaxWithCrossEntropyOpMaker,
            softmax_with_cross_entropy_grad,
            ops::SoftmaxWithCrossEntropyOpGrad);
166 167 168 169
REGISTER_OP_CPU_KERNEL(softmax_with_cross_entropy,
                       ops::SoftmaxWithCrossEntropyKernel<float>);
REGISTER_OP_CPU_KERNEL(softmax_with_cross_entropy_grad,
                       ops::SoftmaxWithCrossEntropyGradKernel<float>);