rank_loss_op.cc 4.7 KB
Newer Older
Y
Yibing Liu 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

   Licensed under the Apache License, Version 2.0 (the "License");
   you may not use this file except in compliance with the License.
   You may obtain a copy of the License at

   http://www.apache.org/licenses/LICENSE-2.0

   Unless required by applicable law or agreed to in writing, software
   distributed under the License is distributed on an "AS IS" BASIS,
   WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
   See the License for the specific language governing permissions and
   limitations under the License. */

#include "paddle/operators/rank_loss_op.h"

namespace paddle {
namespace operators {

class RankLossOp : public framework::OperatorWithKernel {
 public:
  RankLossOp(const std::string &type, const framework::VariableNameMap &inputs,
             const framework::VariableNameMap &outputs,
             const framework::AttributeMap &attrs)
      : OperatorWithKernel(type, inputs, outputs, attrs) {}

27
  void InferShape(framework::InferShapeContext *ctx) const override {
Y
Yibing Liu 已提交
28
    // input check
K
kexinzhao 已提交
29 30 31
    PADDLE_ENFORCE(ctx->HasInput("Label"), "Input(Label) shouldn't be null.");
    PADDLE_ENFORCE(ctx->HasInput("Left"), "Input(Left) shouldn't be null.");
    PADDLE_ENFORCE(ctx->HasInput("Right"), "Input(Right) shouldn't be null.");
Q
Qiao Longfei 已提交
32 33 34 35 36

    auto label_dims = ctx->GetInputDim("Label");
    auto left_dims = ctx->GetInputDim("Left");
    auto right_dims = ctx->GetInputDim("Right");

Y
Yibing Liu 已提交
37 38
    PADDLE_ENFORCE((label_dims == left_dims) && (left_dims == right_dims),
                   "All inputs must have the same size");
39
    PADDLE_ENFORCE((label_dims.size() == 2) && (label_dims[1] == 1),
Y
Yibing Liu 已提交
40
                   "All inputs must be row vector with size batch_size x 1.");
Q
Qiao Longfei 已提交
41
    ctx->SetOutputDim("Out", label_dims);
Y
Yibing Liu 已提交
42 43 44 45 46 47 48 49
  }
};

class RankLossOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
  RankLossOpMaker(framework::OpProto *proto,
                  framework::OpAttrChecker *op_checker)
      : OpProtoAndCheckerMaker(proto, op_checker) {
Y
Yibing Liu 已提交
50
    AddInput("Label",
51 52
             "The label indicating A ranked higher than B or not, row vector.");
    AddInput("Left", "The output of RankNet for doc A, vector.");
K
kexinzhao 已提交
53
    AddInput("Right", "The output of RankNet for doc B, vetor.");
54
    AddOutput("Out", "The output loss of RankLoss operator, vector.");
K
kexinzhao 已提交
55 56
    AddComment(R"DOC(
RankLoss Operator.
Y
Yibing Liu 已提交
57

K
kexinzhao 已提交
58 59 60
RankLoss operator for RankNet
(http://icml.cc/2015/wp-content/uploads/2015/06/icml_ranking.pdf). 
RankNet is a pairwise ranking model with
Y
Yibing Liu 已提交
61 62 63 64 65 66
one training sample consisting of a pair of doc A and B, and the label P
indicating that A is ranked higher than B or not:

P = {0, 1} or {0, 0.5, 1}, where 0.5 means no information about the rank of
the input pair.

K
kexinzhao 已提交
67 68 69
The RankLoss operator takes three inputs: Left (o_i), Right (o_j) and Label
(P_{i,j}), which represent the output of RankNet for the two docs and the label, 
respectively, and yields the rank loss C_{i,j} using the following equation:
Y
Yibing Liu 已提交
70

K
kexinzhao 已提交
71
\f$$
Y
Yibing Liu 已提交
72 73 74
  C_{i,j} = -\tilde{P_{ij}} * o_{i,j} + log(1 + e^{o_{i,j}}) \\
  o_{i,j} =  o_i - o_j  \\
  \tilde{P_{i,j}} = \left \{0, 0.5, 1 \right \} \ or \ \left \{0, 1 \right \}
K
kexinzhao 已提交
75
\f$$
Y
Yibing Liu 已提交
76

Y
Yibing Liu 已提交
77
The operator can take inputs of one sample or in batch.
Y
Yibing Liu 已提交
78

Y
Yibing Liu 已提交
79 80 81 82 83 84 85 86 87 88 89 90
)DOC");
  }
};

class RankLossGradOp : public framework::OperatorWithKernel {
 public:
  RankLossGradOp(const std::string &type,
                 const framework::VariableNameMap &inputs,
                 const framework::VariableNameMap &outputs,
                 const framework::AttributeMap &attrs)
      : OperatorWithKernel(type, inputs, outputs, attrs) {}

91
  void InferShape(framework::InferShapeContext *ctx) const override {
Q
Qiao Longfei 已提交
92 93 94 95 96 97 98 99 100 101 102
    PADDLE_ENFORCE(ctx->HasInput("Label"), "Input(Label) shouldn't be null.");
    PADDLE_ENFORCE(ctx->HasInput("Left"), "Input(Left) shouldn't be null.");
    PADDLE_ENFORCE(ctx->HasInput("Right"), "Input(Right) shouldn't be null.");
    PADDLE_ENFORCE(ctx->HasInput(framework::GradVarName("Out")),
                   "Input(Out@GRAD) shouldn't be null.");
    auto dims = ctx->GetInputDim("Left");
    auto left_grad_name = framework::GradVarName("Left");
    auto right_grad_name = framework::GradVarName("Right");

    if (ctx->HasOutput(left_grad_name)) {
      ctx->SetOutputDim(left_grad_name, dims);
Y
Yibing Liu 已提交
103
    }
Q
Qiao Longfei 已提交
104 105 106

    if (ctx->HasOutput(right_grad_name)) {
      ctx->SetOutputDim(right_grad_name, dims);
Y
Yibing Liu 已提交
107
    }
Y
Yibing Liu 已提交
108 109 110 111 112 113 114 115 116 117 118 119 120
  }
};

}  // namespace operators
}  // namespace paddle
namespace ops = paddle::operators;

REGISTER_OP(rank_loss, ops::RankLossOp, ops::RankLossOpMaker, rank_loss_grad,
            ops::RankLossGradOp);
REGISTER_OP_CPU_KERNEL(rank_loss,
                       ops::RankLossKernel<paddle::platform::CPUPlace, float>);
REGISTER_OP_CPU_KERNEL(
    rank_loss_grad, ops::RankLossGradKernel<paddle::platform::CPUPlace, float>);