sequence2batch.h 6.0 KB
Newer Older
D
dangqingqing 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

   http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

15 16 17 18 19
#pragma once
#include "paddle/framework/lod_tensor.h"
#include "paddle/framework/tensor.h"
#include "paddle/platform/device_context.h"

D
dangqingqing 已提交
20 21 22 23
namespace paddle {
namespace operators {
namespace math {

D
dangqingqing 已提交
24 25 26 27 28 29 30 31 32
template <typename Place, typename T>
class CopyMatrixRowsFunctor {
 public:
  // If is_src_index is true,
  // copy the indexed rows of input src to the output dst.
  // If is_src_index is false,
  // copy the input src to the indexed rows of output dst.
  // The indexed rows are based on the input index.
  void operator()(const platform::DeviceContext& context,
33
                  const framework::Tensor& src, const size_t* index,
D
dangqingqing 已提交
34
                  framework::Tensor& dst, bool is_src_index);
D
dangqingqing 已提交
35 36
};

D
dangqingqing 已提交
37 38
template <typename Place, typename T>
class LoDTensor2BatchFunctor {
Y
Yu Yang 已提交
39 40 41 42 43 44 45 46 47 48 49 50 51 52
  // Calculate the length of each sequence and
  // sort sequence index by the length.
  // example:  sequences = {s0, s1, s2}
  //           s0: 0 0 0 0, s1: 1 1 1 1 1, s2: 2 2 2
  //           seq_info[3] = {(4, 5, 1), (0, 4, 0), (9, 3, 2)}
  //
  struct SeqInfo {
    SeqInfo(int start, int length, int seq_idx)
        : start(start), length(length), seq_idx(seq_idx) {}
    int start;
    int length;
    int seq_idx;
  };

D
dangqingqing 已提交
53 54 55
 public:
  void operator()(const platform::DeviceContext& context,
                  const framework::LoDTensor& lod_tensor,
D
dangqingqing 已提交
56 57 58 59
                  framework::LoDTensor& batch, bool is_cal_batch_lod,
                  bool is_reverse = false) const {
    if (!is_cal_batch_lod) {
      auto lods = batch.lod();
D
dangqingqing 已提交
60
      PADDLE_ENFORCE_GT(lods.size(), 2UL);
D
dangqingqing 已提交
61 62
      PADDLE_ENFORCE_EQ(lods[1].size(),
                        static_cast<size_t>(lod_tensor.dims()[0]));
D
dangqingqing 已提交
63 64 65 66 67
      CopyMatrixRowsFunctor<Place, T> to_batch;
      to_batch(context, lod_tensor, lods[1].data(), batch, true);
      return;
    }

68
    auto lods = lod_tensor.lod();
D
dangqingqing 已提交
69
    auto lod = lods[0];
70
    PADDLE_ENFORCE_EQ(lods.size(), 1UL, "Only support one level sequence now.");
D
dangqingqing 已提交
71 72

    std::vector<SeqInfo> seq_info;
73
    for (size_t seq_id = 0; seq_id < lod.size() - 1; ++seq_id) {
D
dangqingqing 已提交
74 75 76 77 78 79 80
      int length = lod[seq_id + 1] - lod[seq_id];
      seq_info.emplace_back(lod[seq_id], length, seq_id);
    }

    std::sort(seq_info.begin(), seq_info.end(),
              [](SeqInfo a, SeqInfo b) { return a.length > b.length; });

81
    // Calculate the start position of each batch.
D
dangqingqing 已提交
82 83 84 85 86 87
    // example:  sequences = {s0, s1, s2}
    //           s0: 0 0 0 0, s1: 1 1 1 1 1, s2: 2 2 2
    //           num_batch = 5,
    //           batchIndex = {b0, b1, b2, b3, b4}
    //           b0: 1 0 2, b1: 1 0 2, b2: 1 0 2, b3: 1 0, b4: 1
    //           batch_start_positions[6] = {0, 3, 6, 9, 11, 12}
Y
Yu Yang 已提交
88 89 90 91
    //              batch_start_positions[0] = len(b0)
    //              batch_start_positions[1] = len(b0) + len(b1)
    //              batch_start_positions[2] = len(b0) + len(b1) + len(b2)
    //              ...
D
dangqingqing 已提交
92 93 94 95 96
    //           seq2batch_idx[12] = {4, 0, 9,
    //                                5, 1, 10,
    //                                6, 2, 11,
    //                                7, 3,
    //                                8}
97 98 99 100 101
    //           seq_order = {1, 0, 2}, the sort order.
    //               where 1 is the second sequence,
    //                     0 is the first sequence,
    //                     2 is the third sequence.
    // The num_batch represents batch size after rearranging the
D
dangqingqing 已提交
102
    // input LodTensor. It is also the maximum length of input sequence.
103 104

    paddle::framework::LoD batch_lods;
Y
Yu Yang 已提交
105 106
    batch_lods.emplace_back(std::vector<size_t>{0});
    batch_lods.emplace_back(std::vector<size_t>{0});
107
    batch_lods.emplace_back(std::vector<size_t>{0});
108

D
dangqingqing 已提交
109
    // batch_lods[0] is the start positions for batch LoDTensor
Y
Yu Yang 已提交
110 111
    int num_batch = seq_info[0].length;
    batch_lods[0].resize(static_cast<size_t>(num_batch + 1));
D
dangqingqing 已提交
112
    // batch_lods[1] is the raw index in the input LoDTensor
D
dangqingqing 已提交
113
    batch_lods[1].resize(static_cast<size_t>(lod_tensor.dims()[0]));
114 115
    // batch_lods[2] is the sort order for the input LoDTensor.
    batch_lods[2].resize(seq_info.size());
D
dangqingqing 已提交
116

117 118
    size_t* batch_starts = batch_lods[0].data();
    size_t* seq2batch_idx = batch_lods[1].data();
D
dangqingqing 已提交
119
    batch_starts[0] = 0;
D
dangqingqing 已提交
120
    for (int n = 0; n < num_batch; n++) {
Y
Yu Yang 已提交
121
      auto batch_id = static_cast<int>(batch_starts[n]);
D
dangqingqing 已提交
122
      for (size_t i = 0; i < seq_info.size(); ++i) {
D
dangqingqing 已提交
123
        int seq_len = seq_info[i].length;
D
dangqingqing 已提交
124 125
        int start = seq_info[i].start;
        if (n < seq_len) {
D
dangqingqing 已提交
126 127
          seq2batch_idx[batch_id] =
              is_reverse ? start + seq_len - 1 - n : start + n;
D
dangqingqing 已提交
128 129 130 131 132
          batch_id++;
        } else {
          break;
        }
      }
Y
Yu Yang 已提交
133
      batch_starts[n + 1] = static_cast<size_t>(batch_id);
D
dangqingqing 已提交
134
    }
135 136 137 138
    size_t* seq_order = batch_lods[2].data();
    for (size_t i = 0; i < seq_info.size(); ++i) {
      seq_order[i] = seq_info[i].seq_idx;
    }
139
    batch.set_lod(batch_lods);
D
dangqingqing 已提交
140 141

    CopyMatrixRowsFunctor<Place, T> to_batch;
142
    to_batch(context, lod_tensor, seq2batch_idx, batch, true);
D
dangqingqing 已提交
143
  }
D
dangqingqing 已提交
144
};
D
dangqingqing 已提交
145 146

template <typename Place, typename T>
147
class Batch2LoDTensorFunctor {
D
dangqingqing 已提交
148 149 150
 public:
  void operator()(const platform::DeviceContext& context,
                  const framework::LoDTensor& batch,
151 152
                  framework::LoDTensor& lod_tensor) const {
    auto in_lod = batch.lod();
D
dangqingqing 已提交
153
    PADDLE_ENFORCE_GT(in_lod.size(), 2UL);
154 155
    PADDLE_ENFORCE_EQ(in_lod[1].size(),
                      static_cast<size_t>(lod_tensor.dims()[0]));
156
    CopyMatrixRowsFunctor<Place, T> to_seq;
157
    size_t* index = in_lod[1].data();
158 159
    to_seq(context, batch, index, lod_tensor, false);
  }
D
dangqingqing 已提交
160
};
D
dangqingqing 已提交
161 162 163 164

}  // namespace math
}  // namespace operators
}  // namespace paddle