sequence2batch.h 4.5 KB
Newer Older
D
dangqingqing 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

   http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

namespace paddle {
namespace operators {
namespace math {

D
dangqingqing 已提交
19 20 21 22 23 24 25 26 27 28 29 30 31
template <typename Place, typename T>
class CopyMatrixRowsFunctor {
 public:
  // If is_src_index is true,
  // copy the indexed rows of input src to the output dst.
  // If is_src_index is false,
  // copy the input src to the indexed rows of output dst.
  // The indexed rows are based on the input index.
  void operator()(const platform::DeviceContext& context,
                  const framework::Tensor& src, const size_t* index,
                  framework::Tensor& dst, const bool is_src_index);
};

D
dangqingqing 已提交
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112
template <typename Place, typename T>
class LoDTensor2BatchFunctor {
 public:
  void operator()(const platform::DeviceContext& context,
                  const framework::LoDTensor& lod_tensor,
                  framework::LoDTensor& batch, const bool is_reverse) const {
    auto lods = lod_tensor->lod();
    PADDLE_ENFORCE_EQ(lod.size(), 1UL, "Only support one level sequence now.");
    auto lod = lods[0];

    // Calculate the length of each sequence and
    // sort sequence index by the length.
    // example:  sequences = {s0, s1, s2}
    //           s0: 0 0 0 0, s1: 1 1 1 1 1, s2: 2 2 2
    //           seq_info[3] = {(4, 5, 1), (0, 4, 0), (9, 3, 2)}
    //
    struct SeqInfo {
      SeqInfo(int start, int length, int seq_idx)
          : start(start), length(length), seqIdx(seq_idx) {}
      int start;
      int length;
      int seq_idx;
    };

    std::vector<SeqInfo> seq_info;
    for (size_t seq_id = 0; seq_id < lod.size(); ++seq_id) {
      int length = lod[seq_id + 1] - lod[seq_id];
      seq_info.emplace_back(lod[seq_id], length, seq_id);
    }

    std::sort(seq_info.begin(), seq_info.end(),
              [](SeqInfo a, SeqInfo b) { return a.length > b.length; });

    // calculate the start position of each batch
    // (numBatch equal the maxLength of sequences)
    // example:  sequences = {s0, s1, s2}
    //           s0: 0 0 0 0, s1: 1 1 1 1 1, s2: 2 2 2
    //           num_batch = 5,
    //           batchIndex = {b0, b1, b2, b3, b4}
    //           b0: 1 0 2, b1: 1 0 2, b2: 1 0 2, b3: 1 0, b4: 1
    //           batch_start_positions[6] = {0, 3, 6, 9, 11, 12}
    //           seq2batch_idx[12] = {4, 0, 9,
    //                                5, 1, 10,
    //                                6, 2, 11,
    //                                7, 3,
    //                                8}

    // The batch number represents batch size after rearranging the
    // input LodTensor. It is also the maximum length of input sequence.
    auto batch_lods = batch->lod();
    if (!batch_lods) {
      batch_lods->resize(2);
    }
    // batch_lods[0] is the start positions for batch LoDTensor
    int num_batch = (size_t)seq_info[0].length;
    batch_lods[0]->resize(num_batch + 1);
    // batch_lods[1] is the raw index in the input LoDTensor
    auto dims = lod_tensor->dims();
    batch_lods[1]->resize(dims[0]);

    auto* batch_starts = batch_lods[0].data();
    auto* seq2batch_idx = batch_lods[1].data();
    batch_starts[0] = 0;
    for (size_t n = 0; n < num_batch; n++) {
      int batch_id = batch_starts[n];
      for (size_t i = 0; i < seq_info.size(); ++i) {
        size_t seq_len = seq_info[i].length;
        int start = seq_info[i].start;
        if (n < seq_len) {
          if (!is_reverse) {
            seq2batch_idx[batch_id] = start + n;
          } else {
            seq2batch_idx[batch_id] = start + seq_len - 1 - n;
          }
          batch_id++;
        } else {
          break;
        }
      }
      batch_starts[n + 1] = batch_id;
    }
D
dangqingqing 已提交
113 114 115

    CopyMatrixRowsFunctor<Place, T> to_batch;
    to_batch(context, lod_tensor, batch, true);
D
dangqingqing 已提交
116
  }
D
dangqingqing 已提交
117
};
D
dangqingqing 已提交
118 119 120 121 122 123 124 125

template <typename Place, typename T>
class Batch2LoDTensor2Functor {
 public:
  void operator()(const platform::DeviceContext& context,
                  const framework::LoDTensor& batch,
                  framework::LoDTensor& lod_tensor,
                  const bool is_reverse) const;
D
dangqingqing 已提交
126
};
D
dangqingqing 已提交
127 128 129 130

}  // namespace math
}  // namespace operators
}  // namespace paddle