fake_dequantize_op.cu 6.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/operators/fake_dequantize_op.h"

17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46
namespace paddle {
namespace operators {

template <typename T>
__global__ void KeDequantize(const T* in, const T* scale, T max_range, int num,
                             T* out) {
  const int idx = threadIdx.x + blockIdx.x * blockDim.x;
  if (idx < num) {
    out[idx] = in[idx] * scale[0] / max_range;
  }
}

template <typename T>
struct DequantizeFunctor<platform::CUDADeviceContext, T> {
  void operator()(const platform::CUDADeviceContext& dev_ctx,
                  const framework::Tensor* in, const framework::Tensor* scale,
                  T max_range, framework::Tensor* out) {
    const T* in_data = in->data<T>();
    const T* scale_factor = scale->data<T>();
    T* out_data = out->mutable_data<T>(dev_ctx.GetPlace());

    int num = in->numel();
    int block = 512;
    int grid = (num + block - 1) / block;

    KeDequantize<T><<<grid, block, 0, dev_ctx.stream()>>>(
        in_data, scale_factor, max_range, num, out_data);
  }
};

47
template <typename T>
48 49 50
__global__ void DequantizeOneScaleQuantAxis0(const T* in, const T* scale,
                                             T max_range, int num, int channel,
                                             T* out) {
51 52 53 54 55 56 57 58 59
  int tid = threadIdx.x;
  int channel_size = num / channel;
  const T* in_c = in + blockIdx.x * channel_size;
  T* out_c = out + blockIdx.x * channel_size;
  for (int i = tid; i < channel_size; i += blockDim.x) {
    out_c[i] = in_c[i] * scale[blockIdx.x] / max_range;
  }
}

60
template <typename T>
61 62 63 64 65 66 67 68 69
__global__ void DequantizeOneScaleQuantAxisN(const T* in, const T* scale,
                                             const T max_range,
                                             const int64_t num,
                                             const int n_scales,
                                             const int quant_stride, T* out) {
  int64_t idx = blockDim.x * blockIdx.x + threadIdx.x;
  for (int64_t i = idx; i < num; i += blockDim.x * gridDim.x) {
    T s = scale[(i / quant_stride) % n_scales];
    out[i] = in[i] * s / max_range;
70 71 72
  }
}

73 74 75
template <typename T>
__global__ void DequantizeTwoScale(const T* in, const T* scale_one,
                                   const T* scale_two, T max_range, int num,
76
                                   int iter_size, int channel, T* out) {
77
  int tid = threadIdx.x;
78
  int channel_size = num / (iter_size * channel);
79 80 81 82 83 84 85 86 87 88 89 90
  int scale_index = blockIdx.x % channel;
  const T* in_c = in + blockIdx.x * channel_size;
  T* out_c = out + blockIdx.x * channel_size;
  for (int i = tid; i < channel_size; i += blockDim.x) {
    out_c[i] = in_c[i] * scale_one[scale_index] * scale_two[0] / max_range;
  }
}

template <typename T>
struct ChannelDequantizeFunctor<platform::CUDADeviceContext, T> {
  void operator()(const platform::CUDADeviceContext& dev_ctx,
                  const framework::Tensor* in, const framework::Tensor** scales,
91
                  const int scale_num, T max_range, const int quant_axis,
92
                  const int x_num_col_dims, framework::Tensor* out) {
93
    auto in_dims = in->dims();
94 95 96
    const T* in_data = in->data<T>();
    T* out_data = out->mutable_data<T>(dev_ctx.GetPlace());
    if (scale_num == 1) {
97
      int64_t num = in->numel();
98
      const T* scale_factor = scales[0]->data<T>();
99 100 101 102 103
      if (quant_axis == 0) {
        int grid = in_dims[0];
        int block = 1024;
        DequantizeOneScaleQuantAxis0<T><<<grid, block, 0, dev_ctx.stream()>>>(
            in_data, scale_factor, max_range, num, in_dims[0], out_data);
104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122
      } else {
        int quant_stride = 1;
        for (int i = quant_axis + 1; i < in_dims.size(); i++) {
          quant_stride *= in_dims[i];
        }

        int64_t block_size = std::min(
            num, static_cast<int64_t>(dev_ctx.GetMaxThreadsPerBlock() / 4));
        int64_t max_threads =
            dev_ctx.GetMaxPhysicalThreadCount();  // SM * block_per_SM
        const int64_t max_blocks = std::max(
            ((max_threads - 1) / block_size + 1), static_cast<int64_t>(1));
        const int64_t grid_size =
            std::min(max_blocks, (num + block_size - 1) / block_size);

        DequantizeOneScaleQuantAxisN<
            T><<<grid_size, block_size, 0, dev_ctx.stream()>>>(
            in_data, scale_factor, max_range, num, in_dims[quant_axis],
            quant_stride, out_data);
123
      }
124
    } else if (scale_num == 2) {
125
      // Not need to consider quant_axis
126
      int num = in->numel();
127 128 129 130 131
      int iter_size = 1;
      for (int i = 0; i < x_num_col_dims; i++) {
        iter_size *= in->dims()[i];
      }
      int channel = in->dims()[x_num_col_dims];
132 133 134
      const T* scale_one = scales[0]->data<T>();
      const T* scale_two = scales[1]->data<T>();
      int block = 1024;
135
      int grid = iter_size * channel;
136
      DequantizeTwoScale<T><<<grid, block, 0, dev_ctx.stream()>>>(
137
          in_data, scale_one, scale_two, max_range, num, iter_size, channel,
138 139 140 141 142
          out_data);
    }
  }
};

143 144
template struct DequantizeFunctor<platform::CUDADeviceContext, float>;
template struct DequantizeFunctor<platform::CUDADeviceContext, double>;
145 146
template struct ChannelDequantizeFunctor<platform::CUDADeviceContext, float>;
template struct ChannelDequantizeFunctor<platform::CUDADeviceContext, double>;
147 148 149 150

}  // namespace operators
}  // namespace paddle

151 152 153 154 155
namespace ops = paddle::operators;
using CUDA = paddle::platform::CUDADeviceContext;
REGISTER_OP_CUDA_KERNEL(fake_dequantize_max_abs,
                        ops::FakeDequantizeMaxAbsKernel<CUDA, float>,
                        ops::FakeDequantizeMaxAbsKernel<CUDA, double>);
Z
Zhen Wang 已提交
156 157 158 159
REGISTER_OP_CUDA_KERNEL(
    fake_channel_wise_dequantize_max_abs,
    ops::FakeChannelWiseDequantizeMaxAbsKernel<CUDA, float>,
    ops::FakeChannelWiseDequantizeMaxAbsKernel<CUDA, double>);