fake_dequantize_op.cu 5.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/operators/fake_dequantize_op.h"

17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46
namespace paddle {
namespace operators {

template <typename T>
__global__ void KeDequantize(const T* in, const T* scale, T max_range, int num,
                             T* out) {
  const int idx = threadIdx.x + blockIdx.x * blockDim.x;
  if (idx < num) {
    out[idx] = in[idx] * scale[0] / max_range;
  }
}

template <typename T>
struct DequantizeFunctor<platform::CUDADeviceContext, T> {
  void operator()(const platform::CUDADeviceContext& dev_ctx,
                  const framework::Tensor* in, const framework::Tensor* scale,
                  T max_range, framework::Tensor* out) {
    const T* in_data = in->data<T>();
    const T* scale_factor = scale->data<T>();
    T* out_data = out->mutable_data<T>(dev_ctx.GetPlace());

    int num = in->numel();
    int block = 512;
    int grid = (num + block - 1) / block;

    KeDequantize<T><<<grid, block, 0, dev_ctx.stream()>>>(
        in_data, scale_factor, max_range, num, out_data);
  }
};

47
template <typename T>
48 49 50
__global__ void DequantizeOneScaleQuantAxis0(const T* in, const T* scale,
                                             T max_range, int num, int channel,
                                             T* out) {
51 52 53 54 55 56 57 58 59
  int tid = threadIdx.x;
  int channel_size = num / channel;
  const T* in_c = in + blockIdx.x * channel_size;
  T* out_c = out + blockIdx.x * channel_size;
  for (int i = tid; i < channel_size; i += blockDim.x) {
    out_c[i] = in_c[i] * scale[blockIdx.x] / max_range;
  }
}

60 61 62 63 64
template <typename T>
__global__ void DequantizeOneScaleQuantAxis1(const T* in, const T* scale,
                                             T max_range, const int num,
                                             const int cin, const int cout,
                                             T* out) {
65 66
  int bid = blockIdx.x;
  T s = scale[bid % cout];
67

68 69 70
  int wh_size = num / (cin * cout);
  const T* in_current = in + bid * wh_size;
  T* out_current = out + bid * wh_size;
71

72
  for (int i = threadIdx.x; i < wh_size; i += blockDim.x) {
73 74 75 76
    out_current[i] = in_current[i] * s / max_range;
  }
}

77 78 79
template <typename T>
__global__ void DequantizeTwoScale(const T* in, const T* scale_one,
                                   const T* scale_two, T max_range, int num,
80
                                   int iter_size, int channel, T* out) {
81
  int tid = threadIdx.x;
82
  int channel_size = num / (iter_size * channel);
83 84 85 86 87 88 89 90 91 92 93 94
  int scale_index = blockIdx.x % channel;
  const T* in_c = in + blockIdx.x * channel_size;
  T* out_c = out + blockIdx.x * channel_size;
  for (int i = tid; i < channel_size; i += blockDim.x) {
    out_c[i] = in_c[i] * scale_one[scale_index] * scale_two[0] / max_range;
  }
}

template <typename T>
struct ChannelDequantizeFunctor<platform::CUDADeviceContext, T> {
  void operator()(const platform::CUDADeviceContext& dev_ctx,
                  const framework::Tensor* in, const framework::Tensor** scales,
95
                  const int scale_num, T max_range, const int quant_axis,
96
                  const int x_num_col_dims, framework::Tensor* out) {
97
    auto in_dims = in->dims();
98 99 100 101 102
    const T* in_data = in->data<T>();
    T* out_data = out->mutable_data<T>(dev_ctx.GetPlace());
    if (scale_num == 1) {
      int num = in->numel();
      const T* scale_factor = scales[0]->data<T>();
103 104 105 106 107 108 109
      if (quant_axis == 0) {
        int grid = in_dims[0];
        int block = 1024;
        DequantizeOneScaleQuantAxis0<T><<<grid, block, 0, dev_ctx.stream()>>>(
            in_data, scale_factor, max_range, num, in_dims[0], out_data);
      } else if (quant_axis == 1) {
        // Dequantize weight of Cin * Cout * W * H
110 111
        int grid = in_dims[0] * in_dims[1];
        int block = 1024;
112 113 114 115
        DequantizeOneScaleQuantAxis1<T><<<grid, block, 0, dev_ctx.stream()>>>(
            in_data, scale_factor, max_range, num, in_dims[0], in_dims[1],
            out_data);
      }
116
    } else if (scale_num == 2) {
117
      // Not need to consider quant_axis
118
      int num = in->numel();
119 120 121 122 123
      int iter_size = 1;
      for (int i = 0; i < x_num_col_dims; i++) {
        iter_size *= in->dims()[i];
      }
      int channel = in->dims()[x_num_col_dims];
124 125 126
      const T* scale_one = scales[0]->data<T>();
      const T* scale_two = scales[1]->data<T>();
      int block = 1024;
127
      int grid = iter_size * channel;
128
      DequantizeTwoScale<T><<<grid, block, 0, dev_ctx.stream()>>>(
129
          in_data, scale_one, scale_two, max_range, num, iter_size, channel,
130 131 132 133 134
          out_data);
    }
  }
};

135 136
template struct DequantizeFunctor<platform::CUDADeviceContext, float>;
template struct DequantizeFunctor<platform::CUDADeviceContext, double>;
137 138
template struct ChannelDequantizeFunctor<platform::CUDADeviceContext, float>;
template struct ChannelDequantizeFunctor<platform::CUDADeviceContext, double>;
139 140 141 142

}  // namespace operators
}  // namespace paddle

143 144 145 146 147
namespace ops = paddle::operators;
using CUDA = paddle::platform::CUDADeviceContext;
REGISTER_OP_CUDA_KERNEL(fake_dequantize_max_abs,
                        ops::FakeDequantizeMaxAbsKernel<CUDA, float>,
                        ops::FakeDequantizeMaxAbsKernel<CUDA, double>);
Z
Zhen Wang 已提交
148 149 150 151
REGISTER_OP_CUDA_KERNEL(
    fake_channel_wise_dequantize_max_abs,
    ops::FakeChannelWiseDequantizeMaxAbsKernel<CUDA, float>,
    ops::FakeChannelWiseDequantizeMaxAbsKernel<CUDA, double>);