test_lookup_table_op.py 3.4 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
import unittest
import numpy as np
C
chengduoZH 已提交
17 18
import paddle.fluid.core as core
from paddle.fluid.op import Operator
Q
qijun 已提交
19
from op_test import OpTest
20 21


Q
qijun 已提交
22
class TestLookupTableOp(OpTest):
23
    def setUp(self):
Q
qijun 已提交
24 25
        self.op_type = "lookup_table"
        table = np.random.random((17, 31)).astype("float32")
26
        ids = np.random.randint(0, 17, 4).astype("int64")
27 28
        ids_expand = np.expand_dims(ids, axis=1)
        self.inputs = {'W': table, 'Ids': ids_expand}
29 30
        self.outputs = {'Out': table[ids]}

Q
qijun 已提交
31 32
    def test_check_output(self):
        self.check_output()
33

Q
qijun 已提交
34 35
    def test_check_grad(self):
        self.check_grad(['W'], 'Out', no_grad_set=set('Ids'))
36 37


38 39 40 41 42 43 44 45 46 47 48 49 50 51
class TestLookupTableOpWithPadding(TestLookupTableOp):
    def test_check_output(self):
        ids = np.squeeze(self.inputs['Ids'])
        padding_idx = np.random.choice(ids, 1)[0]
        self.outputs['Out'][ids == padding_idx] = np.zeros(31)
        self.attrs = {'padding_idx': long(padding_idx)}
        self.check_output()

    def test_check_grad(self):
        # Since paddings are not trainable and fixed in forward, the gradient of 
        # paddings makes no sense and we don't test the gradient here.
        pass


C
chengduoZH 已提交
52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98
# Testing look_up_table when Ids's type is SelectedRows.
class TestLookupTableIdsIsSelectedRows(OpTest):
    def check_with_place(self, place):
        scope = core.Scope()

        height = 10
        rows = [0, 4, 4, 7]
        row_numel = 12

        ids_selected_rows = scope.var('Ids').get_selected_rows()
        ids_selected_rows.set_height(height)
        ids_selected_rows.set_rows(rows)
        np_array = np.ones((len(rows), row_numel)).astype("float32")
        ids_tensor = ids_selected_rows.get_tensor()
        ids_tensor.set(np_array, place)

        W = scope.var('W').get_tensor()
        W_array = np.full((height, row_numel), 1.0).astype("float32")
        for i in range(height):
            W_array[i] *= i
        W.set(W_array, place)

        Out = scope.var('Out').get_selected_rows()
        Out_array = np.full((len(rows), row_numel), -1.0).astype("float32")
        Out.set_height(height)
        Out.set_rows(rows)
        Out_tensor = Out.get_tensor()
        Out_tensor.set(Out_array, place)

        # create and run concat_rows_op operator
        concat_rows_op = Operator("lookup_table", W='W', Ids='Ids', Out='Out')
        concat_rows_op.run(scope, place)

        # get and compare result
        result_array = np.array(Out_tensor)

        for idx, row in enumerate(rows):
            assert (row == result_array[idx]).all()

    def test_concat_rows(self):
        places = [core.CPUPlace()]
        if core.is_compiled_with_cuda():
            places.append(core.CUDAPlace(0))
        for place in places:
            self.check_with_place(place)


Q
qijun 已提交
99
if __name__ == "__main__":
100
    unittest.main()