# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest import numpy as np import paddle.fluid.core as core from paddle.fluid.op import Operator from op_test import OpTest class TestLookupTableOp(OpTest): def setUp(self): self.op_type = "lookup_table" table = np.random.random((17, 31)).astype("float32") ids = np.random.randint(0, 17, 4).astype("int64") ids_expand = np.expand_dims(ids, axis=1) self.inputs = {'W': table, 'Ids': ids_expand} self.outputs = {'Out': table[ids]} def test_check_output(self): self.check_output() def test_check_grad(self): self.check_grad(['W'], 'Out', no_grad_set=set('Ids')) class TestLookupTableOpWithPadding(TestLookupTableOp): def test_check_output(self): ids = np.squeeze(self.inputs['Ids']) padding_idx = np.random.choice(ids, 1)[0] self.outputs['Out'][ids == padding_idx] = np.zeros(31) self.attrs = {'padding_idx': long(padding_idx)} self.check_output() def test_check_grad(self): # Since paddings are not trainable and fixed in forward, the gradient of # paddings makes no sense and we don't test the gradient here. pass # Testing look_up_table when Ids's type is SelectedRows. class TestLookupTableIdsIsSelectedRows(OpTest): def check_with_place(self, place): scope = core.Scope() height = 10 rows = [0, 4, 4, 7] row_numel = 12 ids_selected_rows = scope.var('Ids').get_selected_rows() ids_selected_rows.set_height(height) ids_selected_rows.set_rows(rows) np_array = np.ones((len(rows), row_numel)).astype("float32") ids_tensor = ids_selected_rows.get_tensor() ids_tensor.set(np_array, place) W = scope.var('W').get_tensor() W_array = np.full((height, row_numel), 1.0).astype("float32") for i in range(height): W_array[i] *= i W.set(W_array, place) Out = scope.var('Out').get_selected_rows() Out_array = np.full((len(rows), row_numel), -1.0).astype("float32") Out.set_height(height) Out.set_rows(rows) Out_tensor = Out.get_tensor() Out_tensor.set(Out_array, place) # create and run concat_rows_op operator concat_rows_op = Operator("lookup_table", W='W', Ids='Ids', Out='Out') concat_rows_op.run(scope, place) # get and compare result result_array = np.array(Out_tensor) for idx, row in enumerate(rows): assert (row == result_array[idx]).all() def test_concat_rows(self): places = [core.CPUPlace()] if core.is_compiled_with_cuda(): places.append(core.CUDAPlace(0)) for place in places: self.check_with_place(place) if __name__ == "__main__": unittest.main()