multi_devices_graph_pass.cc 39.0 KB
Newer Older
Y
Yu Yang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13
//   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
C
chengduo 已提交
14
#include "paddle/fluid/framework/details/multi_devices_graph_pass.h"
C
chengduoZH 已提交
15
#include <algorithm>
Y
Yancey1989 已提交
16
#include <fstream>
Q
Qiao Longfei 已提交
17
#include <memory>
C
chengduoZH 已提交
18
#include <string>
Q
Qiao Longfei 已提交
19 20
#include <unordered_map>
#include <unordered_set>
C
chengduoZH 已提交
21
#include <utility>
C
chengduoZH 已提交
22
#include <vector>
23
#include "paddle/fluid/framework/details/all_reduce_op_handle.h"
C
chengduoZH 已提交
24
#include "paddle/fluid/framework/details/broadcast_op_handle.h"
Y
Yu Yang 已提交
25
#include "paddle/fluid/framework/details/computation_op_handle.h"
W
Wu Yi 已提交
26
#include "paddle/fluid/framework/details/fetch_barrier_op_handle.h"
27
#include "paddle/fluid/framework/details/fused_broadcast_op_handle.h"
C
chengduoZH 已提交
28
#include "paddle/fluid/framework/details/reduce_op_handle.h"
Y
Yancey1989 已提交
29
#include "paddle/fluid/framework/details/rpc_op_handle.h"
Y
Yu Yang 已提交
30
#include "paddle/fluid/framework/details/scale_loss_grad_op_handle.h"
X
better  
Xin Pan 已提交
31
#include "paddle/fluid/framework/ir/graph_helper.h"
X
Xin Pan 已提交
32
#include "paddle/fluid/framework/ir/node.h"
Y
Fix bug  
yuyang18 已提交
33
#include "paddle/fluid/framework/op_info.h"
Y
Yu Yang 已提交
34
#include "paddle/fluid/framework/scope.h"
35
#include "paddle/fluid/operators/math/math_function.h"
Y
Yu Yang 已提交
36

Y
Yu Yang 已提交
37 38 39
namespace paddle {
namespace framework {
namespace details {
X
Xin Pan 已提交
40

X
Xin Pan 已提交
41
namespace {
X
Xin Pan 已提交
42
// TODO(panyx0718): Clean this up as well.
X
Xin Pan 已提交
43 44 45 46 47
// all operators. NOTE that even we use a vector here, the operators is
// unordered.
typedef std::vector<OpHandleBase *> GraphOps;
const char kGraphOps[] = "ops";

C
chengduo 已提交
48 49 50 51 52 53
bool OpHaveRole(const ir::Node &node, const framework::OpRole &role) {
  return boost::get<int>(
             node.Op()->GetAttr(OpProtoAndCheckerMaker::OpRoleAttrName())) ==
         static_cast<int>(role);
}

X
Xin Pan 已提交
54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110
void PolishGraphToSupportDataHazards(ir::Graph *graph) {
  for (auto &var_map : graph->Get<GraphVars>(kGraphVars)) {
    for (auto &name_pair : var_map) {
      if (name_pair.second.size() <= 1) {
        continue;
      }
      auto it_new = name_pair.second.rbegin();
      auto it_old = name_pair.second.rbegin();
      ++it_old;
      for (; it_old != name_pair.second.rend(); it_new = it_old, ++it_old) {
        OpHandleBase *write_op = (*it_new)->GeneratedOp();
        const auto &read_ops = (*it_old)->PendingOps();

        for (auto *read_op : read_ops) {
          // Manually add a dependency var from read_op to write_op;
          if (read_op == write_op) {
            // Read Write is the same op.
            continue;
          }
          bool has_dep = false;
          for (auto *r_out : read_op->Outputs()) {
            for (auto *w_in : write_op->Inputs()) {
              if (r_out->Node() == w_in->Node()) {
                has_dep = true;
                break;
              }
            }
          }
          if (has_dep) continue;

          auto *dep_var = new DummyVarHandle(graph->CreateControlDepVar());
          read_op->AddOutput(dep_var);
          write_op->AddInput(dep_var);
          graph->Get<GraphDepVars>(kGraphDepVars).emplace(dep_var);
        }
      }
    }
  }
}

VarHandle *CreateOrGetLatestVarHandle(ir::Graph *graph, ir::Node *node,
                                      const platform::Place &place,
                                      size_t place_offset) {
  auto &var_holders = graph->Get<GraphVars>(kGraphVars)[place_offset];
  auto &var_holder = var_holders[node->Name()];
  VarHandle *var = nullptr;
  if (var_holder.empty()) {
    if (node->Var()) {
      var = new VarHandle(graph->CreateVarNode(node->Var()), 0, place_offset,
                          node->Name(), place);
    } else {
      var = new VarHandle(
          graph->CreateEmptyNode(node->Name(), ir::Node::Type::kVariable), 0,
          place_offset, node->Name(), place);
    }
    var_holder.emplace_back(var);
  } else {
X
clean1  
Xin Pan 已提交
111
    var = *var_holder.rbegin();
X
Xin Pan 已提交
112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138
  }
  return var;
}

void CreateOpOutput(ir::Graph *graph, OpHandleBase *op_handle,
                    ir::Node *new_node, const platform::Place &place,
                    size_t place_offset) {
  auto &vars =
      graph->Get<GraphVars>(kGraphVars)[place_offset][new_node->Name()];
  size_t version = vars.size();
  auto var =
      new VarHandle(new_node, version, place_offset, new_node->Name(), place);
  vars.emplace_back(var);
  op_handle->AddOutput(var);
}

void AddOutputToLeafOps(ir::Graph *graph) {
  for (auto &op : graph->Get<GraphOps>(kGraphOps)) {
    if (!op->Outputs().empty()) {
      continue;
    }
    auto *dummy_leaf = new DummyVarHandle(graph->CreateControlDepVar());
    graph->Get<GraphDepVars>(kGraphDepVars).emplace(dummy_leaf);
    op->AddOutput(dummy_leaf);
  }
}
}  // namespace
Y
Yu Yang 已提交
139

C
chengduo 已提交
140 141
void MultiDevSSAGraphBuilderBase::CheckGraph(const ir::Graph &graph) const {}

142
void MultiDevSSAGraphBuilderBase::Init() const {
X
clean  
Xin Pan 已提交
143 144
  all_vars_.clear();

X
Xin Pan 已提交
145
  loss_var_name_ = Get<const std::string>(kLossVarName);
C
chengduo 已提交
146
  VLOG(10) << "Init MultiDevSSAGraphBuilder, loss name: " << loss_var_name_;
X
Xin Pan 已提交
147 148 149
  places_ = Get<const std::vector<platform::Place>>(kPlaces);
  local_scopes_ = Get<const std::vector<Scope *>>(kLocalScopes);
  strategy_ = Get<const BuildStrategy>(kStrategy);
P
peizhilin 已提交
150
#if defined(PADDLE_WITH_CUDA) && !defined(_WIN32)
C
chengduo 已提交
151
  nccl_ctxs_ = &Get<platform::NCCLContextMap>(kNCCLCtxs);
Y
Yu Yang 已提交
152
#endif
C
chengduo 已提交
153
  PADDLE_ENFORCE_EQ(places_.size(), local_scopes_.size());
Y
Yu Yang 已提交
154 155
}

156
void MultiDevSSAGraphBuilderBase::ApplyImpl(ir::Graph *graph) const {
X
Xin Pan 已提交
157
  Init();
C
chengduo 已提交
158
  CheckGraph(*graph);
159
  std::vector<ir::Node *> sorted_ops = SortOperations(*graph);
C
chengduo 已提交
160

X
Xin Pan 已提交
161 162
  auto nodes = graph->ReleaseNodes();
  ir::Graph &result = *graph;
163 164

  for (auto &node : nodes) {
X
Xin Pan 已提交
165
    if (node->IsVar() && node->Var()) {
X
Xin Pan 已提交
166
      all_vars_.emplace(node->Name(), node->Var());
167
    }
C
fix ci  
chengduoZH 已提交
168
  }
Y
Yu Yang 已提交
169 170

  // We cannot invoke resize. It is a bug of GCC 4.8
X
Xin Pan 已提交
171 172 173
  result.Set(kGraphVars, new GraphVars(places_.size()));
  result.Set(kGraphDepVars, new GraphDepVars);
  result.Set(kGraphOps, new GraphOps);
174

Y
Yu Yang 已提交
175
  bool is_forwarding = true;
X
Xin Pan 已提交
176

X
better  
Xin Pan 已提交
177
  for (ir::Node *node : sorted_ops) {
178 179
    if (DealWithSpecialOp(&result, node)) {
      continue;
Y
Yu Yang 已提交
180
    } else {
181 182 183 184 185 186 187 188 189
      // This op runs on all devices
      if (IsScaleLossOp(node)) {
        // user can customize loss@grad if not use_default_grad_scale_
        InsertScaleLossGradOp(&result, node);
        // This assumes the backward generating code will ensure IsScaleLossOp
        // is true only for the op that scale the final scalar loss.
        // It also assumes backward op will always follow the forward op in
        // the block.
        is_forwarding = false;
C
chengduo 已提交
190
      } else {
191 192
        CreateComputationalOps(&result, node, places_.size());
      }
193

W
Wu Yi 已提交
194 195
      // Insert collective ops if nranks > 1
      if (!is_forwarding && Get<size_t>(kNRanks) > 1) {
196
        try {
C
chengduo 已提交
197 198 199 200
          bool is_bk_op =
              static_cast<bool>(boost::get<int>(node->Op()->GetAttr(
                                    OpProtoAndCheckerMaker::OpRoleAttrName())) &
                                static_cast<int>(OpRole::kBackward));
201 202
          // optimize op is already processed in DealWithSpecialOp,
          // here we only consider backward op
C
chengduo 已提交
203
          if (!is_bk_op) continue;
204

205 206 207 208 209 210 211 212 213 214 215 216
          /*
           * the op that will generate the gradient of on parameter will have
           one attr op_role_var
           * to record the parameter and gradient, like:
            attrs {
              name: "op_role_var"
              type: STRINGS
              strings: "fc_1.b_0"
              strings: "fc_1.b_0@GRAD"
            }
           */

C
chengduo 已提交
217 218
          // Currently, we assume that once gradient is generated, it can be
          // broadcast, and each gradient is only broadcast once.
219 220 221 222 223 224 225
          auto backward_vars =
              boost::get<std::vector<std::string>>(node->Op()->GetNullableAttr(
                  OpProtoAndCheckerMaker::OpRoleVarAttrName()));
          PADDLE_ENFORCE_EQ(backward_vars.size() % 2, 0);
          for (size_t i = 0; i < backward_vars.size(); i += 2) {
            auto &p_name = backward_vars[i];
            auto &g_name = backward_vars[i + 1];
226 227
            VLOG(10) << "Bcast " << g_name << " for parameter " << p_name
                     << " op_type " << node->Op()->Type();
W
Wu Yi 已提交
228 229 230
            if (NeedCollectiveForGrad(g_name, sorted_ops)) {
              InsertCollectiveOp(&result, p_name, g_name);
            }
Y
Yu Yang 已提交
231
          }
232
        } catch (boost::bad_get e) {
Y
Yu Yang 已提交
233 234 235 236
        }
      }
    }
  }
237

238 239
  InsertPostprocessOps(&result);

Y
Yu Yang 已提交
240
  /*
X
Xin Pan 已提交
241 242
  Dependency graph has been constructed. However, there are still data
  hazards need to be handled.
243
  */
Y
Yu Yang 已提交
244
  PolishGraphToSupportDataHazards(&result);
Y
Yu Yang 已提交
245

Y
Yu Yang 已提交
246 247 248 249
  /*
   * Only variables should be the leaves of graph.
   */
  AddOutputToLeafOps(&result);
C
chengduo 已提交
250

F
flame 已提交
251
  result.Erase(kGraphOps);
Y
Yu Yang 已提交
252 253
}

254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272
void MultiDevSSAGraphBuilderBase::InsertScaleLossGradOp(
    ir::Graph *result, const ir::Node *node) const {
  // user can customize loss@grad if not use_default_grad_scale_
  size_t loss_scale = 0;
  switch (this->strategy_.gradient_scale_) {
    case BuildStrategy::GradientScaleStrategy::kOne:
      loss_scale = 1;
      break;
    case BuildStrategy::GradientScaleStrategy::kCoeffNumDevice:
      loss_scale = Get<size_t>(kNRanks);
      break;
    case BuildStrategy::GradientScaleStrategy::kCustomized:
      loss_scale = 0;
      break;
    default:
      LOG(FATAL) << "Unknown gradient scale strategy.";
      break;
  }

Q
Qiao Longfei 已提交
273 274
  VLOG(3) << "loss_scale: " << loss_scale;

275 276 277 278 279 280 281 282
  if (loss_scale) {
    // TODO(paddle-dev): Why is there no input for this op_handle?
    auto loss_grad_name = node->Op()->OutputArgumentNames()[0];
    auto out_dtype = this->all_vars_.at(loss_grad_name)->GetDataType();
    this->CreateScaleLossGradOp(result, loss_grad_name, node->outputs[0],
                                loss_scale, out_dtype);
  }
}
C
chengduo 已提交
283

C
chengduo 已提交
284 285 286 287 288
bool MultiDevSSAGraphBuilderBase::DealWithSpecialOp(ir::Graph *result,
                                                    ir::Node *node) const {
  return false;
}

289 290 291 292
std::vector<ir::Node *> MultiDevSSAGraphBuilderBase::SortOperations(
    const ir::Graph &graph) const {
  return ir::TopologySortOperations(graph);
}
C
chengduo 已提交
293

294 295 296 297 298 299 300
bool MultiDevSSAGraphBuilderBase::UseGPU() const {
  bool use_gpu = false;
#if defined(PADDLE_WITH_CUDA) && !defined(_WIN32)
  use_gpu = nccl_ctxs_ != nullptr;
#endif
  return use_gpu;
}
C
chengduo 已提交
301

W
Wu Yi 已提交
302 303 304 305 306 307 308 309 310 311 312 313 314 315
bool MultiDevSSAGraphBuilderBase::NeedCollectiveForGrad(
    const std::string &grad_name, std::vector<ir::Node *> ops) const {
  // if we have allreduce_op for current gradient variable in the graph,
  // then we don't need to add allreduce_op_handle for this gradient
  // NOTE: This is for the case that all gradients should add collective ops
  for (auto *node : ops) {
    if (node->Op()->Type() != "allreduce") continue;
    for (auto in_name : node->Op()->InputArgumentNames()) {
      if (in_name == grad_name) {
        return false;
      }
    }
  }
  return true;
C
chengduo 已提交
316 317
}

318 319 320
void MultiDevSSAGraphBuilderBase::CreateOpHandleIOs(ir::Graph *result,
                                                    ir::Node *node,
                                                    size_t place_id) const {
C
chengduo 已提交
321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342
  auto p = places_[place_id];
  auto *op_handle = result->Get<GraphOps>(kGraphOps).back();
  op_handle->SetDeviceContext(p,
                              platform::DeviceContextPool::Instance().Get(p));

  for (ir::Node *input : node->inputs) {
    VarHandle *var = CreateOrGetLatestVarHandle(result, input, p, place_id);
    op_handle->AddInput(var);
  }

  for (ir::Node *output : node->outputs) {
    ir::Node *new_node = nullptr;
    if (output->Var()) {
      new_node = result->CreateVarNode(output->Var());
    } else {
      new_node =
          result->CreateEmptyNode(output->Name(), ir::Node::Type::kVariable);
    }
    CreateOpOutput(result, op_handle, new_node, p, place_id);
  }
}

343
void MultiDevSSAGraphBuilderBase::SetCommunicationContext(
344
    OpHandleBase *op_handle, const platform::Place &p) const {
P
peizhilin 已提交
345
#if defined(PADDLE_WITH_CUDA) && !defined(_WIN32)
346 347 348 349 350 351 352 353 354 355
  if (nccl_ctxs_ == nullptr) {
    op_handle->SetDeviceContext(p,
                                platform::DeviceContextPool::Instance().Get(p));
  }
#else
  op_handle->SetDeviceContext(p,
                              platform::DeviceContextPool::Instance().Get(p));
#endif
}

356 357 358
void MultiDevSSAGraphBuilderBase::CreateBroadcastOp(ir::Graph *result,
                                                    const std::string &p_name,
                                                    size_t src_dev_id) const {
P
peizhilin 已提交
359
#if defined(PADDLE_WITH_CUDA) && !defined(_WIN32)
X
polish  
Xin Pan 已提交
360 361 362
  auto *op_handle = new BroadcastOpHandle(
      result->CreateEmptyNode("broadcast", ir::Node::Type::kOperation),
      local_scopes_, places_, nccl_ctxs_);
C
chengduoZH 已提交
363
#else
X
polish  
Xin Pan 已提交
364 365 366
  auto *op_handle = new BroadcastOpHandle(
      result->CreateEmptyNode("broadcast", ir::Node::Type::kOperation),
      local_scopes_, places_);
C
chengduoZH 已提交
367
#endif
X
Xin Pan 已提交
368
  result->Get<GraphOps>(kGraphOps).emplace_back(op_handle);
X
Xin Pan 已提交
369

X
Xin Pan 已提交
370
  auto *in =
X
clean1  
Xin Pan 已提交
371
      result->Get<GraphVars>(kGraphVars).at(src_dev_id).at(p_name).back();
C
chengduoZH 已提交
372 373 374 375
  op_handle->AddInput(in);

  for (size_t i = 0; i < places_.size(); ++i) {
    auto &p = places_[i];
C
chengduoZH 已提交
376
    SetCommunicationContext(op_handle, p);
X
Xin Pan 已提交
377
    auto &vars = result->Get<GraphVars>(kGraphVars).at(i).at(p_name);
X
polish  
Xin Pan 已提交
378 379 380
    auto *out_var = new VarHandle(
        result->CreateEmptyNode(p_name, ir::Node::Type::kVariable), vars.size(),
        i, p_name, p);
C
chengduoZH 已提交
381 382 383 384 385
    vars.emplace_back(out_var);
    op_handle->AddOutput(out_var);
  }
}

386
void MultiDevSSAGraphBuilderBase::CreateFusedBroadcastOp(
387 388
    ir::Graph *result,
    const std::vector<std::unordered_set<std::string>> &bcast_varnames) const {
P
peizhilin 已提交
389
#if defined(PADDLE_WITH_CUDA) && !defined(_WIN32)
390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407
  auto *op_handle = new FusedBroadcastOpHandle(
      result->CreateEmptyNode("fused_broadcast", ir::Node::Type::kOperation),
      local_scopes_, places_, nccl_ctxs_);
#else
  auto *op_handle = new FusedBroadcastOpHandle(
      result->CreateEmptyNode("fused_broadcast", ir::Node::Type::kOperation),
      local_scopes_, places_);
#endif
  result->Get<GraphOps>(kGraphOps).emplace_back(op_handle);

  for (size_t i = 0; i < places_.size(); ++i) {
    auto &p = places_[i];
    SetCommunicationContext(op_handle, p);
  }

  for (size_t dev_id = 0; dev_id < bcast_varnames.size(); ++dev_id) {
    for (auto &p_name : bcast_varnames[dev_id]) {
      auto *in =
X
clean1  
Xin Pan 已提交
408
          result->Get<GraphVars>(kGraphVars).at(dev_id).at(p_name).back();
409 410 411 412 413 414 415 416 417 418 419 420 421 422 423
      op_handle->AddInput(in);
      for (size_t out_dev_id = 0; out_dev_id < places_.size(); ++out_dev_id) {
        auto &p = places_[out_dev_id];
        auto &vars =
            result->Get<GraphVars>(kGraphVars).at(out_dev_id).at(p_name);
        auto *out_var = new VarHandle(
            result->CreateEmptyNode(p_name, ir::Node::Type::kVariable),
            vars.size(), out_dev_id, p_name, p);
        vars.emplace_back(out_var);
        op_handle->AddOutput(out_var);
      }
    }
  }
}

424 425
void MultiDevSSAGraphBuilderBase::CreateComputationalOp(ir::Graph *result,
                                                        ir::Node *node,
426
                                                        size_t dev_id) const {
X
Xin Pan 已提交
427
  result->Get<GraphOps>(kGraphOps).emplace_back(
X
Xin Pan 已提交
428
      new ComputationOpHandle(result->CreateOpNode(node->Op()),
S
sneaxiy 已提交
429
                              local_scopes_[dev_id], places_[dev_id], dev_id));
430
  CreateOpHandleIOs(result, node, dev_id);
C
chengduoZH 已提交
431 432
}

433 434 435
void MultiDevSSAGraphBuilderBase::CreateAllReduceOp(ir::Graph *result,
                                                    const std::string &og,
                                                    bool is_encoded) const {
Y
Yancey1989 已提交
436 437 438
  OpHandleBase *op_handle = nullptr;

  auto append_allreduce_op = [&](
Y
Yancey1989 已提交
439 440
      const std::vector<Scope *> &scopes,
      const std::vector<platform::Place> &places) -> OpHandleBase * {
P
peizhilin 已提交
441
#if defined(PADDLE_WITH_CUDA) && !defined(_WIN32)
Y
Yancey1989 已提交
442 443
    result->Get<GraphOps>(kGraphOps).emplace_back(new AllReduceOpHandle(
        result->CreateEmptyNode("allreduce", ir::Node::Type::kOperation),
444 445 446
        scopes, places, nccl_ctxs_, is_encoded,
        static_cast<int>(strategy_.trainers_endpoints_.size()) *
            places_.size()));
C
chengduoZH 已提交
447
#else
Y
Yancey1989 已提交
448 449 450
    result->Get<GraphOps>(kGraphOps).emplace_back(new AllReduceOpHandle(
        result->CreateEmptyNode("allreduce", ir::Node::Type::kOperation),
        scopes, places));
C
chengduoZH 已提交
451
#endif
Y
Yancey1989 已提交
452 453 454 455 456
    return result->Get<GraphOps>(kGraphOps).back();
  };

  if (!strategy_.enable_parallel_graph_)
    op_handle = append_allreduce_op(local_scopes_, places_);
Y
Yu Yang 已提交
457 458

  for (size_t i = 0; i < places_.size(); ++i) {
Y
Yancey1989 已提交
459 460 461
    if (strategy_.enable_parallel_graph_) {
      op_handle = append_allreduce_op({local_scopes_[i]}, {places_[i]});
    }
Y
Yancey1989 已提交
462

Y
Yancey1989 已提交
463
    SetCommunicationContext(op_handle, places_[i]);
X
Xin Pan 已提交
464
    auto &vars = result->Get<GraphVars>(kGraphVars)[i][og];
Y
Yu Yang 已提交
465 466
    PADDLE_ENFORCE(!vars.empty());
    auto &prev_grad = vars.back();
X
clean1  
Xin Pan 已提交
467
    op_handle->AddInput(prev_grad);
468
    VLOG(10) << "all_reduce_op_handle add input " << prev_grad->DebugString();
Y
Yu Yang 已提交
469

X
Xin Pan 已提交
470
    auto var =
X
polish  
Xin Pan 已提交
471
        new VarHandle(result->CreateEmptyNode(og, ir::Node::Type::kVariable),
Y
Yancey1989 已提交
472
                      vars.size(), i, og, places_[i]);
Y
Yu Yang 已提交
473 474
    vars.emplace_back(var);
    op_handle->AddOutput(var);
475 476
    VLOG(10) << "all_reduce_op_handle add output " << og
             << ", handle:" << var->DebugString();
Y
Yu Yang 已提交
477 478 479
  }
}

480
void MultiDevSSAGraphBuilderBase::CreateScaleLossGradOp(
481
    ir::Graph *result, const std::string &loss_grad_name,
482 483
    ir::Node *out_var_node, size_t loss_scale,
    proto::VarType::Type dtype) const {
Y
Yu Yang 已提交
484
  for (size_t i = 0; i < places_.size(); ++i) {
Y
yuyang18 已提交
485
    auto *dev_ctx = platform::DeviceContextPool::Instance().Get(places_[i]);
X
Xin Pan 已提交
486
    auto *op_handle = new ScaleLossGradOpHandle(
X
polish  
Xin Pan 已提交
487
        result->CreateEmptyNode("scale_loss_grad", ir::Node::Type::kOperation),
488
        loss_scale, local_scopes_[i], places_[i], dev_ctx, dtype);
X
Xin Pan 已提交
489
    result->Get<GraphOps>(kGraphOps).emplace_back(op_handle);
Y
Yu Yang 已提交
490 491 492 493 494 495 496

    // FIXME: Currently ScaleLossGradOp only use device_count as scale
    // factor. So it does not depend on any other operators.
    // VarHandle *loss = GetVarHandle(loss_var_name, place);
    // loss->pending_ops_.emplace_back(op_handle);
    // op_handle->inputs_.emplace_back(loss);

497 498
    CreateOpOutput(result, op_handle,
                   result->CreateVarNode(out_var_node->Var()), places_[i], i);
Y
Yu Yang 已提交
499 500 501
  }
}

502 503
void MultiDevSSAGraphBuilderBase::CreateComputationalOps(
    ir::Graph *result, ir::Node *node, size_t num_places) const {
T
typhoonzero 已提交
504
  for (size_t scope_idx = 0; scope_idx < num_places; ++scope_idx) {
Y
Yu Yang 已提交
505 506
    auto p = places_[scope_idx];
    auto s = local_scopes_[scope_idx];
S
sneaxiy 已提交
507 508
    result->Get<GraphOps>(kGraphOps).emplace_back(new ComputationOpHandle(
        result->CreateOpNode(node->Op()), s, p, scope_idx));
509
    CreateOpHandleIOs(result, node, scope_idx);
Y
Yu Yang 已提交
510 511 512
  }
}

513 514
VarHandle *MultiDevSSAGraphBuilderBase::CreateReduceOp(
    ir::Graph *result, const std::string &og, size_t dst_dev_id) const {
P
peizhilin 已提交
515
#if defined(PADDLE_WITH_CUDA) && !defined(_WIN32)
X
Xin Pan 已提交
516
  result->Get<GraphOps>(kGraphOps).emplace_back(new ReduceOpHandle(
X
polish  
Xin Pan 已提交
517 518
      result->CreateEmptyNode("reduce", ir::Node::Type::kOperation),
      local_scopes_, places_, nccl_ctxs_));
C
chengduoZH 已提交
519
#else
X
Xin Pan 已提交
520
  result->Get<GraphOps>(kGraphOps).emplace_back(new ReduceOpHandle(
X
polish  
Xin Pan 已提交
521 522
      result->CreateEmptyNode("reduce", ir::Node::Type::kOperation),
      local_scopes_, places_));
C
chengduoZH 已提交
523
#endif
X
clean1  
Xin Pan 已提交
524
  auto *op_handle = result->Get<GraphOps>(kGraphOps).back();
C
chengduoZH 已提交
525 526 527

  for (size_t i = 0; i < places_.size(); ++i) {
    auto &p = places_[i];
C
chengduoZH 已提交
528
    SetCommunicationContext(op_handle, p);
X
Xin Pan 已提交
529
    auto &vars = result->Get<GraphVars>(kGraphVars)[i][og];
C
chengduoZH 已提交
530 531
    PADDLE_ENFORCE(!vars.empty());
    auto &prev_grad = vars.back();
X
clean1  
Xin Pan 已提交
532
    op_handle->AddInput(prev_grad);
C
chengduoZH 已提交
533
  }
X
Xin Pan 已提交
534
  auto &vars = result->Get<GraphVars>(kGraphVars)[dst_dev_id][og];
X
polish  
Xin Pan 已提交
535 536 537
  auto var =
      new VarHandle(result->CreateEmptyNode(og, ir::Node::Type::kVariable),
                    vars.size(), dst_dev_id, og, places_[dst_dev_id]);
C
chengduoZH 已提交
538 539 540 541 542
  vars.emplace_back(var);
  op_handle->AddOutput(var);
  return var;
}

543
bool MultiDevSSAGraphBuilderBase::IsScaleLossOp(ir::Node *node) const {
C
chengduo 已提交
544 545
  return !loss_var_name_.empty() && node->Op() &&
         boost::get<int>(
546 547
             node->Op()->GetAttr(OpProtoAndCheckerMaker::OpRoleAttrName())) ==
             (static_cast<int>(OpRole::kBackward) |
C
chengduo 已提交
548
              static_cast<int>(OpRole::kLoss));
549 550 551 552 553
}

bool MultiDevSSAGraphBuilderBase::IsSparseGradient(
    const std::string &og) const {
  PADDLE_ENFORCE(all_vars_.count(og) != 0);
C
chengduo 已提交
554
  return all_vars_.at(og)->GetType() == proto::VarType::SELECTED_ROWS;
555 556 557 558 559 560 561 562 563 564
}

void AllReduceSSAGraphBuilder::InsertCollectiveOp(
    ir::Graph *result, const std::string &p_name,
    const std::string &g_name) const {
  if (IsSparseGradient(g_name)) {
    CreateReduceOp(result, g_name, 0);
    CreateBroadcastOp(result, g_name, 0);
  } else {
    CreateAllReduceOp(result, g_name);
565
  }
566
}
567

568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660
int BalanceVarSSAGraphBuilder::GetVarDeviceID(
    const std::string &varname) const {
  auto got = sharded_var_device_.find(varname);
  if (got == sharded_var_device_.end()) {
    auto pos = varname.find(framework::kNewGradSuffix);
    if (pos != std::string::npos) {
      got = sharded_var_device_.find(varname.substr(0, pos));
    }
  }
  return got == sharded_var_device_.end() ? -1 : got->second;
}

int BalanceVarSSAGraphBuilder::GetOpDeviceID(ir::Node *node) const {
  if (strategy_.reduce_ != BuildStrategy::ReduceStrategy::kReduce) {
    return -1;
  }
  if (!OpHaveRole(*node, framework::OpRole::kOptimize)) {
    return -1;
  }
  auto param_grad = boost::get<std::vector<std::string>>(
      node->Op()->GetAttr(OpProtoAndCheckerMaker::OpRoleVarAttrName()));

  PADDLE_ENFORCE_EQ(param_grad.size(), 2U);
  int dev_id = GetVarDeviceID(param_grad[1]);
  PADDLE_ENFORCE_NE(dev_id, -1, "dev_id should not be -1.[%s, %s, %s]",
                    node->Op()->Type(), param_grad[0], param_grad[1]);
  return dev_id;
}

size_t BalanceVarSSAGraphBuilder::GetAppropriateDeviceID(
    const std::vector<std::string> &var_names) const {
  int64_t numel_sum = 0;
  for (auto var_name : var_names) {
    if (all_vars_.find(var_name) == all_vars_.end()) continue;
    auto var_desc = all_vars_.at(var_name);
    PADDLE_ENFORCE_NOT_NULL(var_desc);
    auto dim = framework::make_ddim(var_desc->GetShape());
    int64_t numel = framework::product(dim);
    PADDLE_ENFORCE_GT(numel, 0);
    numel_sum += numel;
  }

  auto smallest =
      std::min_element(std::begin(balance_vars_), std::end(balance_vars_));
  size_t dev_id =
      static_cast<size_t>(std::distance(std::begin(balance_vars_), smallest));
  balance_vars_[dev_id] += numel_sum;
  return dev_id;
}

void BalanceVarSSAGraphBuilder::ResetState() const {
  balance_vars_.clear();
  sharded_var_device_.clear();

  balance_vars_.resize(places_.size(), 0);
}

void ReduceSSAGraphBuilder::Init() const {
  MultiDevSSAGraphBuilderBase::Init();
  ResetState();
}

void ReduceSSAGraphBuilder::ResetState() const {
  BalanceVarSSAGraphBuilder::ResetState();
  bcast_var_name_set_.clear();
  bcast_var_name_set_.resize(places_.size());
}

void ReduceSSAGraphBuilder::InsertCollectiveOp(
    ir::Graph *result, const std::string &p_name,
    const std::string &g_name) const {
  size_t cur_device_id = GetAppropriateDeviceID({g_name});
  CreateReduceOp(result, g_name, cur_device_id);
  sharded_var_device_.emplace(g_name, cur_device_id);
  bcast_var_name_set_[cur_device_id].emplace(p_name);
}

bool ReduceSSAGraphBuilder::DealWithSpecialOp(ir::Graph *result,
                                              ir::Node *node) const {
  int op_dev_id = BalanceVarSSAGraphBuilder::GetOpDeviceID(node);
  if (op_dev_id != -1) {
    // This op only runs on one specific device.
    CreateComputationalOp(result, node, op_dev_id);
    for (ir::Node *n : node->outputs) {
      sharded_var_device_.emplace(n->Name(), op_dev_id);
    }
    return true;
  }
  return false;
}

void ReduceSSAGraphBuilder::InsertPostprocessOps(ir::Graph *result) const {
  if (UseGPU()) {
661
    if (strategy_.fuse_broadcast_ops_) {
662 663 664 665 666 667 668
      CreateFusedBroadcastOp(result, bcast_var_name_set_);
    } else {
      for (size_t dev_id = 0; dev_id < bcast_var_name_set_.size(); ++dev_id) {
        auto &to_bcast_set = bcast_var_name_set_[dev_id];
        for (auto &bcast_name : to_bcast_set) {
          CreateBroadcastOp(result, bcast_name, dev_id);
        }
Y
Yancey1989 已提交
669 670
      }
    }
671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712
  }
}

int ReduceSSAGraphBuilder::GetOpDeviceID(
    ir::Node *node,
    std::unordered_map<std::string, std::vector<ir::Node *>> *delay_ops) const {
  if (!OpHaveRole(*node, framework::OpRole::kOptimize)) {
    return -1;
  }

  auto param_grad = boost::get<std::vector<std::string>>(
      node->Op()->GetAttr(OpProtoAndCheckerMaker::OpRoleVarAttrName()));

  PADDLE_ENFORCE_EQ(param_grad.size(), 2U);
  int dev_id = GetVarDeviceID(param_grad[1]);

  if (dev_id == -1) {
    (*delay_ops)[param_grad[1]].push_back(node);
    return -2;
  }
  return dev_id;
}

std::vector<ir::Node *> ReduceSSAGraphBuilder::SortOperations(
    const ir::Graph &graph) const {
  std::vector<ir::Node *> sorted_ops = ir::TopologySortOperations(graph);
  return SortForReduceMode(sorted_ops);
}

std::vector<ir::Node *> ReduceSSAGraphBuilder::SortForReduceMode(
    const std::vector<ir::Node *> &topo_ops) const {
  std::vector<ir::Node *> sorted_ops;
  std::unordered_map<std::string, std::vector<ir::Node *>> delayed_op;
  sorted_ops.reserve(topo_ops.size());
  ResetState();

  auto insert_delayed_op = [&](const std::string &var_name, int dev_id) {
    sharded_var_device_.emplace(var_name, dev_id);
    if (delayed_op.count(var_name)) {
      auto &ops = delayed_op.at(var_name);
      sorted_ops.insert(sorted_ops.end(), ops.begin(), ops.end());
      delayed_op.at(var_name).clear();
Y
Yancey1989 已提交
713
    }
714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750
  };

  for (ir::Node *node : topo_ops) {
    int op_dev_id = GetOpDeviceID(node, &delayed_op);
    if (op_dev_id > -1) {
      // This op only runs on one specific device.
      sorted_ops.emplace_back(node);
      for (ir::Node *n : node->outputs) {
        insert_delayed_op(n->Name(), op_dev_id);
      }
    } else if (op_dev_id == -1) {
      // This op runs on all devices, and its output may have parameter's
      // gradients.
      sorted_ops.emplace_back(node);
      bool is_bk_op =
          static_cast<bool>(boost::get<int>(node->Op()->GetAttr(
                                OpProtoAndCheckerMaker::OpRoleAttrName())) &
                            static_cast<int>(OpRole::kBackward));
      if (!is_bk_op) continue;
      // Currently, we assume that once gradient is generated, it can be
      // broadcast, and each gradient is only broadcast once.
      std::vector<std::string> backward_vars;
      try {
        backward_vars =
            boost::get<std::vector<std::string>>(node->Op()->GetNullableAttr(
                OpProtoAndCheckerMaker::OpRoleVarAttrName()));
      } catch (boost::bad_get e) {
      }
      PADDLE_ENFORCE_EQ(backward_vars.size() % 2, 0);

      for (size_t i = 0; i < backward_vars.size(); i += 2) {
        auto &g_name = backward_vars[i + 1];
        size_t cur_device_id = GetAppropriateDeviceID({g_name});
        insert_delayed_op(g_name, static_cast<int>(cur_device_id));
      }
    } else if (op_dev_id == -2) {
      // The Op on which the Op depends has not yet been generated.
Y
yi.wu 已提交
751
    }
Y
Yancey1989 已提交
752 753
  }

754
  PADDLE_ENFORCE_EQ(sorted_ops.size(), topo_ops.size());
Y
Yancey1989 已提交
755

756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791
  ResetState();
  return sorted_ops;
}

void DistSSAGraphBuilder::Init() const {
  MultiDevSSAGraphBuilderBase::Init();
  ResetState();
}

void DistSSAGraphBuilder::ResetState() const {
  BalanceVarSSAGraphBuilder::ResetState();
  bcast_var_name_set_.clear();
  bcast_var_name_set_.resize(places_.size());
}

bool DistSSAGraphBuilder::DealWithSpecialOp(ir::Graph *result,
                                            ir::Node *node) const {
  bool insert_op = false;
  if (OpHaveRole(*node, OpRole::kRPC)) {
    int op_dev_id = CreateRPCOp(result, node);
    PADDLE_ENFORCE(op_dev_id != -1,
                   "Can not schedule the RPC operator to the right place.");
    if (node->Op()->Type() == "recv") {
      auto recv_vars_attr =
          boost::get<std::vector<std::string>>(node->Op()->GetNullableAttr(
              OpProtoAndCheckerMaker::OpRoleVarAttrName()));
      PADDLE_ENFORCE(recv_vars_attr.size() == 2UL);  // [parameter, gradient]
      if (recv_vars_attr[0].find(".block") == std::string::npos) {
        bcast_var_name_set_[op_dev_id].emplace(recv_vars_attr[0]);
      }
    }
    insert_op = true;
    need_broadcast_var_ = true;
  } else if (OpHaveRole(*node, OpRole::kDist)) {
    int op_dev_id = CreateDistTrainOp(result, node);
    if (node->Op()->Type() == "concat") {
792 793
      // the input(block of parameter) of concat is on different device,
      // the output(parameter) will on one device.
794 795 796 797 798 799 800
      auto origin_param_name = node->Op()->OutputArgumentNames()[0];
      bcast_var_name_set_[op_dev_id].emplace(origin_param_name);
    }
    insert_op = true;
  } else {
    int op_dev_id = GetOpDeviceID(node);
    if (op_dev_id != -1) {  // This op only runs on one specific device.
801
      // optimize op will be processed here.
802 803 804 805 806 807 808 809
      CreateComputationalOp(result, node, op_dev_id);
      for (ir::Node *n : node->outputs) {
        sharded_var_device_.emplace(n->Name(), op_dev_id);
      }
      insert_op = true;
    }
  }
  return insert_op;
W
Wu Yi 已提交
810 811 812
}

void SetOpInputsAllPlaces(ir::Graph *result, ir::Node *node, int num_places) {
X
clean1  
Xin Pan 已提交
813
  auto *op_handle = result->Get<GraphOps>(kGraphOps).back();
W
Wu Yi 已提交
814 815 816 817 818 819
  for (ir::Node *input : node->inputs) {
    VarHandle *var = nullptr;
    for (int place_offset = 0; place_offset < num_places; ++place_offset) {
      auto &var_holders = result->Get<GraphVars>(kGraphVars)[place_offset];
      auto &var_holder = var_holders[input->Name()];
      if (!var_holder.empty()) {
X
clean1  
Xin Pan 已提交
820
        var = *var_holder.rbegin();
W
Wu Yi 已提交
821 822 823
        op_handle->AddInput(var);
      }
    }
Y
Yancey1989 已提交
824 825 826
  }
}

827
// Create RPC related op handles that connects its in ops and out ops.
828
int DistSSAGraphBuilder::CreateRPCOp(ir::Graph *result, ir::Node *node) const {
Y
Yancey1989 已提交
829
  int op_dev_id = -1;
830
  if (node->Op()->Type() == "send") {
X
Xin Pan 已提交
831
    // TODO(paddle-dev): getting the first var is not safe.
832
    op_dev_id = GetVarDeviceID(node->inputs[0]->Name());
X
Xin Pan 已提交
833 834
    PADDLE_ENFORCE(!ir::IsControlDepVar(*node->inputs[0]),
                   "This hack no longer holds, please fix.");
Y
Yancey1989 已提交
835 836 837
    // the variable name which contains .block means it was splited by
    // split_byref op
    if (strategy_.reduce_ == BuildStrategy::ReduceStrategy::kAllReduce &&
X
Xin Pan 已提交
838
        node->inputs[0]->Name().find(".block") == std::string::npos) {
839 840
      std::vector<std::string> input_var_names;
      for (ir::Node *n : node->inputs) {
X
Xin Pan 已提交
841
        input_var_names.push_back(n->Name());
842
      }
W
Wu Yi 已提交
843 844 845 846
      auto send_param_grad = boost::get<std::vector<std::string>>(
          node->Op()->GetAttr(OpProtoAndCheckerMaker::OpRoleVarAttrName()));
      PADDLE_ENFORCE_EQ(send_param_grad.size(), 2U);
      op_dev_id = GetAppropriateDeviceID({send_param_grad[1]});
M
minqiyang 已提交
847 848
      VLOG(10) << "send grad " << input_var_names[0] << " origin "
               << send_param_grad[1] << " place: " << op_dev_id;
849
      for (auto &varname : input_var_names) {
850
        sharded_var_device_.emplace(varname, op_dev_id);
Y
Yancey1989 已提交
851
      }
852
      sharded_var_device_.emplace(send_param_grad[1], op_dev_id);
Y
Yancey1989 已提交
853
    }
854 855 856
  } else if (node->Op()->Type() == "recv") {
    std::vector<std::string> output_var_names;
    for (ir::Node *n : node->outputs) {
X
Xin Pan 已提交
857
      output_var_names.push_back(n->Name());
858
    }
W
Wu Yi 已提交
859 860
    auto recv_param_grad = boost::get<std::vector<std::string>>(
        node->Op()->GetAttr(OpProtoAndCheckerMaker::OpRoleVarAttrName()));
Q
Qiao Longfei 已提交
861
    if (recv_param_grad.size() == 2U) {
862
      op_dev_id = GetVarDeviceID(recv_param_grad[1]);
M
minqiyang 已提交
863 864 865
      VLOG(10) << "recv param " << recv_param_grad[0]
               << " get grad place: " << recv_param_grad[1]
               << " place: " << op_dev_id;
W
Wu Yi 已提交
866 867 868
    } else {
      op_dev_id = GetAppropriateDeviceID(output_var_names);
    }
869
    for (auto &varname : output_var_names) {
870
      sharded_var_device_.emplace(varname, op_dev_id);
Y
Yancey1989 已提交
871 872
    }
  } else {
W
Wu Yi 已提交
873
    // send_barrier, fetch_barrier will run on place 0;
Y
Yancey1989 已提交
874 875 876 877
    op_dev_id = 0;
  }

  PADDLE_ENFORCE(op_dev_id != -1, "can not find the right place for rpc op: %s",
878
                 node->Op()->Type());
W
Wu Yi 已提交
879 880 881 882 883 884 885 886 887 888 889

  // Create fetch_barrier op handle to enable output on all devices.
  // **NOTE** fetch_barrier should output variables list same as recv op does.
  if (node->Op()->Type() == "fetch_barrier") {
    result->Get<GraphOps>(kGraphOps).emplace_back(new FetchBarrierOpHandle(
        result->CreateOpNode(node->Op()), local_scopes_, places_));
  } else {
    result->Get<GraphOps>(kGraphOps).emplace_back(new RPCOpHandle(
        result->CreateOpNode(node->Op()), *node->Op(), local_scopes_[op_dev_id],
        node->Op()->Type(), places_[op_dev_id]));
  }
Y
fix pe  
Yancey1989 已提交
890

W
Wu Yi 已提交
891 892
  if (node->Op()->Type() == "send") {
    CreateOpHandleIOs(result, node, op_dev_id);
Y
Yancey1989 已提交
893
  } else {
W
Wu Yi 已提交
894 895 896
    // send_barrier, recv, fetch_barrier's inputs are deps var, get them from
    // all places
    auto p = places_[op_dev_id];
X
clean1  
Xin Pan 已提交
897
    auto *op_handle = result->Get<GraphOps>(kGraphOps).back();
W
Wu Yi 已提交
898 899
    op_handle->SetDeviceContext(p,
                                platform::DeviceContextPool::Instance().Get(p));
Y
Yancey1989 已提交
900

W
Wu Yi 已提交
901 902 903 904
    SetOpInputsAllPlaces(result, node, places_.size());
    for (ir::Node *output : node->outputs) {
      int outvar_dev_id = op_dev_id;
      if (node->Op()->Type() == "fetch_barrier") {
905
        outvar_dev_id = GetVarDeviceID(output->Name());
Q
Qiao Longfei 已提交
906
        PADDLE_ENFORCE_NE(outvar_dev_id, -1, "output name %s", output->Name());
W
Wu Yi 已提交
907 908 909 910 911 912 913 914 915 916 917 918
      }
      p = places_[outvar_dev_id];
      ir::Node *new_node = nullptr;
      if (output->Var()) {
        new_node = result->CreateVarNode(output->Var());
      } else {
        new_node =
            result->CreateEmptyNode(output->Name(), ir::Node::Type::kVariable);
      }
      CreateOpOutput(result, op_handle, new_node, p, outvar_dev_id);
    }
  }
Y
Yancey1989 已提交
919
  return op_dev_id;
Y
Yu Yang 已提交
920 921
}

922 923 924 925 926 927 928
int DistSSAGraphBuilder::CreateDistTrainOp(ir::Graph *result,
                                           ir::Node *node) const {
  int op_dev_id = -1;
  std::vector<std::string> input_var_names;
  std::vector<std::string> output_var_names;
  for (ir::Node *input : node->inputs) {
    input_var_names.push_back(input->Name());
C
chengduo 已提交
929
  }
930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965
  for (ir::Node *output : node->outputs) {
    output_var_names.push_back(output->Name());
  }

  if (node->Op()->Type() == "split_byref" ||
      node->Op()->Type() == "split_selected_rows" ||
      node->Op()->Type() == "split_ids") {
    // TODO(paddle-dev): getting the first var is not safe.
    op_dev_id = GetVarDeviceID(input_var_names[0]);
    if (strategy_.reduce_ == BuildStrategy::ReduceStrategy::kAllReduce) {
      op_dev_id = GetAppropriateDeviceID(input_var_names);
      for (auto &varname : input_var_names) {
        sharded_var_device_.emplace(varname, op_dev_id);
      }
    }
    for (auto &varname : output_var_names) {
      sharded_var_device_.emplace(varname, op_dev_id);
    }
  } else if (node->Op()->Type() == "concat") {
    op_dev_id = GetVarDeviceID(input_var_names[0]);
    for (auto &varname : output_var_names) {
      sharded_var_device_.emplace(varname, op_dev_id);
    }
  } else {
    LOG(ERROR) << "got unexpected dist op: " << node->Op()->Type();
    PADDLE_THROW(
        "the distribute training related op should be in [split_byref, "
        "concat].");
  }

  PADDLE_ENFORCE(op_dev_id != -1,
                 "can not find right place for distributed op: %s",
                 node->Op()->Type());

  CreateComputationalOp(result, node, op_dev_id);
  return op_dev_id;
C
chengduo 已提交
966 967
}

968 969 970 971 972 973 974 975 976 977 978
bool DistSSAGraphBuilder::IsEncoded(const std::string &p_name) const {
  auto u_name = p_name + "__dgc_u__";
  auto it = all_vars_.find(u_name);
  if (it == all_vars_.end()) {
    VLOG(10) << "can't find u_name, so it's not encoded:" << u_name;
    return false;
  }

  return true;
}

979 980 981
void DistSSAGraphBuilder::InsertCollectiveOp(ir::Graph *result,
                                             const std::string &p_name,
                                             const std::string &g_name) const {
982
  // collective gradient to each device
983 984 985 986 987 988 989 990 991 992 993 994
  size_t cur_device_id = 0;
  switch (strategy_.reduce_) {
    case BuildStrategy::ReduceStrategy::kReduce:
      cur_device_id = GetAppropriateDeviceID({g_name});
      CreateReduceOp(result, g_name, cur_device_id);
      sharded_var_device_.emplace(g_name, cur_device_id);
      break;
    case BuildStrategy::ReduceStrategy::kAllReduce:
      if (IsSparseGradient(g_name)) {
        CreateReduceOp(result, g_name, 0);
        CreateBroadcastOp(result, g_name, 0);
      } else {
995 996 997 998 999
#if defined(PADDLE_WITH_CUDA) && !defined(_WIN32)
        CreateAllReduceOp(result, g_name, IsEncoded(p_name));
#else
        PADDLE_ENFORCE(false, "Compiled withoud cuda!");
#endif
1000 1001 1002 1003 1004 1005 1006 1007 1008
      }
      break;
    default:
      LOG(FATAL) << "Unknown reduce strategy.";
      break;
  }
}

void DistSSAGraphBuilder::InsertPostprocessOps(ir::Graph *result) const {
1009 1010
  // broad cast received parameters when training in parameter server mode.
  if (need_broadcast_var_) {
Q
Qiao Longfei 已提交
1011 1012 1013 1014 1015 1016 1017 1018
    // There are 4 conditions:
    // 1. GPU && Reduce: Reduce gradient then broadcast gradient to other GPUS.
    // Need to broadcast received parameters to other GPU.
    // 2. GPU && AllReduce: AllReduce all graident to each GPU. Need to
    // broadcast received parameters to other GPU.
    // 3. CPU && AllReduce: AllReduce all gradient to each thread. Need to
    // broadcast received parameters to other scope.
    // 4. CPU && Reduce: because all parameters share the same memory, did not
Q
Qiao Longfei 已提交
1019
    // broadcast received parameters.
1020
    if (!UseGPU() &&
Q
Qiao Longfei 已提交
1021
        strategy_.reduce_ == BuildStrategy::ReduceStrategy::kReduce) {
1022 1023
      return;
    }
1024
    if (strategy_.fuse_broadcast_ops_) {
1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039
      CreateFusedBroadcastOp(result, bcast_var_name_set_);
    } else {
      for (size_t dev_id = 0; dev_id < bcast_var_name_set_.size(); ++dev_id) {
        auto &to_bcast_set = bcast_var_name_set_[dev_id];
        for (auto &bcast_name : to_bcast_set) {
          CreateBroadcastOp(result, bcast_name, dev_id);
        }
      }
    }
  }
}

std::unordered_set<std::string> &MultiDevSSAGraphBuilder() {
  static std::unordered_set<std::string> regs;
  return regs;
Y
Yu Yang 已提交
1040
}
1041 1042 1043 1044 1045 1046

static int MultiDevSSAGraphBuilderRegister(const std::string &builder_mode) {
  MultiDevSSAGraphBuilder().insert(builder_mode);
  return 0;
}

Y
Yu Yang 已提交
1047 1048 1049
}  // namespace details
}  // namespace framework
}  // namespace paddle
X
Xin Pan 已提交
1050

1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066
#define REGISTER_MULTI_DEVICES_PASS(pass_name, pass_class)                     \
  STATIC_ASSERT_GLOBAL_NAMESPACE(                                              \
      _reg_ssa_graph_builder_##pass_name,                                      \
      "REGISTER_MULTI_DEVICES_PASS must be called in global namespace.");      \
  int _reg_ssa_graph_builder_entry_##pass_name =                               \
      paddle::framework::details::MultiDevSSAGraphBuilderRegister(#pass_name); \
  REGISTER_PASS(pass_name, pass_class)                                         \
      .RequirePassAttr(paddle::framework::details::kLossVarName)               \
      .RequirePassAttr(paddle::framework::details::kPlaces)                    \
      .RequirePassAttr(paddle::framework::details::kLocalScopes)               \
      .RequirePassAttr(paddle::framework::details::kStrategy)                  \
      .RequirePassAttr(paddle::framework::details::kNRanks)

REGISTER_MULTI_DEVICES_PASS(reduce_mode_multi_devices_pass,
                            paddle::framework::details::ReduceSSAGraphBuilder);
REGISTER_MULTI_DEVICES_PASS(
C
chengduo 已提交
1067
    all_reduce_mode_multi_devices_pass,
1068 1069 1070
    paddle::framework::details::AllReduceSSAGraphBuilder);
REGISTER_MULTI_DEVICES_PASS(dist_multi_devices_pass,
                            paddle::framework::details::DistSSAGraphBuilder);
Q
can run  
Qiao Longfei 已提交
1071 1072
REGISTER_MULTI_DEVICES_PASS(async_multi_devices_pass,
                            paddle::framework::details::AsyncSSAGraphBuilder);