rpn_target_assign_op.cc 43.6 KB
Newer Older
Y
Yuan Gao 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include <random>
#include "paddle/fluid/framework/op_registry.h"
17
#include "paddle/fluid/operators/detection/bbox_util.h"
Y
Yuan Gao 已提交
18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33
#include "paddle/fluid/operators/math/math_function.h"

namespace paddle {
namespace operators {

using Tensor = framework::Tensor;
using LoDTensor = framework::LoDTensor;
template <typename T, int MajorType = Eigen::RowMajor,
          typename IndexType = Eigen::DenseIndex>
using EigenMatrix = framework::EigenMatrix<T, MajorType, IndexType>;

class RpnTargetAssignOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext* ctx) const override {
34 35 36 37 38 39 40 41
    PADDLE_ENFORCE(ctx->HasInput("Anchor"),
                   "Input(Anchor) of RpnTargetAssignOp should not be null");
    PADDLE_ENFORCE(ctx->HasInput("GtBoxes"),
                   "Input(GtBoxes) of RpnTargetAssignOp should not be null");
    PADDLE_ENFORCE(ctx->HasInput("IsCrowd"),
                   "Input(Anchor) of RpnTargetAssignOp should not be null");
    PADDLE_ENFORCE(ctx->HasInput("ImInfo"),
                   "Input(ImInfo) of RpnTargetAssignOp should not be null");
Y
Yuan Gao 已提交
42 43 44 45 46 47 48 49 50 51

    PADDLE_ENFORCE(
        ctx->HasOutput("LocationIndex"),
        "Output(LocationIndex) of RpnTargetAssignOp should not be null");
    PADDLE_ENFORCE(
        ctx->HasOutput("ScoreIndex"),
        "Output(ScoreIndex) of RpnTargetAssignOp should not be null");
    PADDLE_ENFORCE(
        ctx->HasOutput("TargetLabel"),
        "Output(TargetLabel) of RpnTargetAssignOp should not be null");
52 53 54
    PADDLE_ENFORCE(
        ctx->HasOutput("TargetBBox"),
        "Output(TargetBBox) of RpnTargetAssignOp should not be null");
J
jerrywgz 已提交
55
    PADDLE_ENFORCE(
J
jerrywgz 已提交
56 57
        ctx->HasOutput("BBoxInsideWeight"),
        "Output(BBoxInsideWeight) of RpnTargetAssignOp should not be null");
58 59 60 61 62 63 64 65 66 67

    auto anchor_dims = ctx->GetInputDim("Anchor");
    auto gt_boxes_dims = ctx->GetInputDim("GtBoxes");
    auto im_info_dims = ctx->GetInputDim("ImInfo");
    PADDLE_ENFORCE_EQ(anchor_dims.size(), 2,
                      "The rank of Input(Anchor) must be 2.");
    PADDLE_ENFORCE_EQ(gt_boxes_dims.size(), 2,
                      "The rank of Input(GtBoxes) must be 2.");
    PADDLE_ENFORCE_EQ(im_info_dims.size(), 2,
                      "The rank of Input(ImInfo) must be 2.");
68 69 70 71 72

    ctx->SetOutputDim("LocationIndex", {-1});
    ctx->SetOutputDim("ScoreIndex", {-1});
    ctx->SetOutputDim("TargetLabel", {-1, 1});
    ctx->SetOutputDim("TargetBBox", {-1, 4});
J
jerrywgz 已提交
73
    ctx->SetOutputDim("BBoxInsideWeight", {-1, 4});
74 75 76 77 78 79
  }

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
    return framework::OpKernelType(
80
        OperatorWithKernel::IndicateVarDataType(ctx, "Anchor"),
81
        platform::CPUPlace());
Y
Yuan Gao 已提交
82 83 84 85
  }
};

template <typename T>
86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173
void AppendRpns(LoDTensor* out, int64_t offset, Tensor* to_add) {
  auto* out_data = out->data<T>();
  auto* to_add_data = to_add->data<T>();
  memcpy(out_data + offset, to_add_data, to_add->numel() * sizeof(T));
}

template <typename T>
std::vector<Tensor> FilterStraddleAnchor(
    const platform::CPUDeviceContext& context, const Tensor* anchor,
    const float rpn_straddle_thresh, T im_height, T im_width) {
  std::vector<int> inds_inside;
  int anchor_num = anchor->dims()[0];
  auto* anchor_data = anchor->data<T>();
  if (rpn_straddle_thresh >= 0) {
    int index;
    for (int i = 0; i < anchor_num; ++i) {
      index = i * 4;
      if ((anchor_data[index + 0] >= -rpn_straddle_thresh) &&
          (anchor_data[index + 1] >= -rpn_straddle_thresh) &&
          (anchor_data[index + 2] < im_width + rpn_straddle_thresh) &&
          (anchor_data[index + 3] < im_height + rpn_straddle_thresh)) {
        inds_inside.emplace_back(i);
      }
    }
  } else {
    for (int i = 0; i < anchor_num; ++i) {
      inds_inside.emplace_back(i);
    }
  }
  int inside_num = inds_inside.size();
  Tensor inds_inside_t;
  int* inds_inside_data =
      inds_inside_t.mutable_data<int>({inside_num}, context.GetPlace());
  std::copy(inds_inside.begin(), inds_inside.end(), inds_inside_data);
  Tensor inside_anchor_t;
  T* inside_anchor_data =
      inside_anchor_t.mutable_data<T>({inside_num, 4}, context.GetPlace());
  Gather<T>(anchor->data<T>(), 4, inds_inside_data, inside_num,
            inside_anchor_data);
  std::vector<Tensor> res;
  res.emplace_back(inds_inside_t);
  res.emplace_back(inside_anchor_t);
  return res;
}

template <typename T>
Tensor FilterCrowdGt(const platform::CPUDeviceContext& context,
                     Tensor* gt_boxes, Tensor* is_crowd) {
  int gt_num = gt_boxes->dims()[0];
  std::vector<int> not_crowd_inds;
  auto* is_crowd_data = is_crowd->data<int>();
  for (int i = 0; i < gt_num; ++i) {
    if (is_crowd_data[i] == 0) {
      not_crowd_inds.emplace_back(i);
    }
  }
  int ncrowd_num = not_crowd_inds.size();
  Tensor ncrowd_gt_boxes;
  T* ncrowd_gt_boxes_data =
      ncrowd_gt_boxes.mutable_data<T>({ncrowd_num, 4}, context.GetPlace());
  Gather<T>(gt_boxes->data<T>(), 4, not_crowd_inds.data(), ncrowd_num,
            ncrowd_gt_boxes_data);
  return ncrowd_gt_boxes;
}

void ReservoirSampling(const int num, std::vector<int>* inds,
                       std::minstd_rand engine, bool use_random) {
  std::uniform_real_distribution<float> uniform(0, 1);
  size_t len = inds->size();
  if (len > static_cast<size_t>(num)) {
    if (use_random) {
      for (size_t i = num; i < len; ++i) {
        int rng_ind = std::floor(uniform(engine) * i);
        if (rng_ind < num)
          std::iter_swap(inds->begin() + rng_ind, inds->begin() + i);
      }
    }
    inds->resize(num);
  }
}

template <typename T>
void ScoreAssign(const T* anchor_by_gt_overlap_data,
                 const Tensor& anchor_to_gt_max, const Tensor& gt_to_anchor_max,
                 const int rpn_batch_size_per_im, const float rpn_fg_fraction,
                 const float rpn_positive_overlap,
                 const float rpn_negative_overlap, std::vector<int>* fg_inds,
                 std::vector<int>* bg_inds, std::vector<int>* tgt_lbl,
J
jerrywgz 已提交
174
                 std::vector<int>* fg_fake, std::vector<T>* bbox_inside_weight,
175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202
                 std::minstd_rand engine, bool use_random) {
  float epsilon = 0.00001;
  int anchor_num = anchor_to_gt_max.dims()[0];
  int gt_num = gt_to_anchor_max.dims()[0];
  std::vector<int> target_label(anchor_num, -1);
  std::vector<int> fg_inds_fake;
  std::vector<int> bg_inds_fake;
  const T* anchor_to_gt_max_data = anchor_to_gt_max.data<T>();
  const T* gt_to_anchor_max_data = gt_to_anchor_max.data<T>();
  // TODO(buxingyuan): Match with Detectron now
  // but it seems here is a bug in two directions assignment
  // in which the later one may overwrites the former one.
  for (int64_t i = 0; i < anchor_num; ++i) {
    bool is_anchors_with_max_overlap = false;
    for (int64_t j = 0; j < gt_num; ++j) {
      T value = anchor_by_gt_overlap_data[i * gt_num + j];
      T diff = std::abs(value - gt_to_anchor_max_data[j]);
      if (diff < epsilon) {
        is_anchors_with_max_overlap = true;
        break;
      }
    }
    bool is_anchor_great_than_thresh =
        (anchor_to_gt_max_data[i] >= rpn_positive_overlap);
    if (is_anchors_with_max_overlap || is_anchor_great_than_thresh) {
      fg_inds_fake.push_back(i);
    }
  }
203

204
  // Reservoir Sampling
205 206 207 208 209 210 211
  int fg_num = 0;
  if (rpn_fg_fraction > 0 && rpn_batch_size_per_im > 0) {
    fg_num = static_cast<int>(rpn_fg_fraction * rpn_batch_size_per_im);
    ReservoirSampling(fg_num, &fg_inds_fake, engine, use_random);
  } else {
    fg_num = static_cast<int>(fg_inds_fake.size());
  }
J
jerrywgz 已提交
212 213
  int fg_fake_num = static_cast<int>(fg_inds_fake.size());
  for (int64_t i = 0; i < fg_fake_num; ++i) {
214 215
    target_label[fg_inds_fake[i]] = 1;
  }
216

217 218 219 220 221
  for (int64_t i = 0; i < anchor_num; ++i) {
    if (anchor_to_gt_max_data[i] < rpn_negative_overlap) {
      bg_inds_fake.push_back(i);
    }
  }
222 223 224 225 226 227 228 229 230
  int bg_num = 0;
  if (rpn_fg_fraction > 0 && rpn_batch_size_per_im > 0) {
    bg_num = rpn_batch_size_per_im - fg_fake_num;
    ReservoirSampling(bg_num, &bg_inds_fake, engine, use_random);
    bg_num = static_cast<int>(bg_inds_fake.size());
  } else {
    bg_num = static_cast<int>(bg_inds_fake.size());
  }

J
jerrywgz 已提交
231
  int fake_num = 0;
232
  for (int64_t i = 0; i < bg_num; ++i) {
J
jerrywgz 已提交
233 234 235 236 237 238 239 240
    // fg fake found
    if (target_label[bg_inds_fake[i]] == 1) {
      fake_num++;
      fg_fake->emplace_back(fg_inds_fake[0]);
      for (int j = 0; j < 4; ++j) {
        bbox_inside_weight->emplace_back(T(0.));
      }
    }
241 242
    target_label[bg_inds_fake[i]] = 0;
  }
243

J
jerrywgz 已提交
244 245 246 247
  for (int64_t i = 0; i < (fg_fake_num - fake_num) * 4; ++i) {
    bbox_inside_weight->emplace_back(T(1.));
  }

248
  for (int64_t i = 0; i < anchor_num; ++i) {
J
jerrywgz 已提交
249 250 251 252
    if (target_label[i] == 1) {
      fg_inds->emplace_back(i);
      fg_fake->emplace_back(i);
    }
253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280
    if (target_label[i] == 0) bg_inds->emplace_back(i);
  }
  fg_num = fg_inds->size();
  bg_num = bg_inds->size();

  tgt_lbl->resize(fg_num + bg_num, 0);
  std::vector<int> fg_lbl(fg_num, 1);
  std::vector<int> bg_lbl(bg_num, 0);
  std::copy(fg_lbl.begin(), fg_lbl.end(), tgt_lbl->data());
  std::copy(bg_lbl.begin(), bg_lbl.end(), tgt_lbl->data() + fg_num);
}

template <typename T>
std::vector<Tensor> SampleRpnFgBgGt(const platform::CPUDeviceContext& ctx,
                                    const Tensor& anchor_by_gt_overlap,
                                    const int rpn_batch_size_per_im,
                                    const float rpn_positive_overlap,
                                    const float rpn_negative_overlap,
                                    const float rpn_fg_fraction,
                                    std::minstd_rand engine, bool use_random) {
  auto* anchor_by_gt_overlap_data = anchor_by_gt_overlap.data<T>();
  int anchor_num = anchor_by_gt_overlap.dims()[0];
  int gt_num = anchor_by_gt_overlap.dims()[1];

  std::vector<int> fg_inds;
  std::vector<int> bg_inds;
  std::vector<int> gt_inds;
  std::vector<int> tgt_lbl;
J
jerrywgz 已提交
281 282
  std::vector<int> fg_fake;
  std::vector<T> bbox_inside_weight;
283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308
  // Calculate the max IoU between anchors and gt boxes
  // Map from anchor to gt box that has highest overlap
  auto place = ctx.GetPlace();
  Tensor anchor_to_gt_max, anchor_to_gt_argmax, gt_to_anchor_max;
  anchor_to_gt_max.mutable_data<T>({anchor_num}, place);
  int* argmax = anchor_to_gt_argmax.mutable_data<int>({anchor_num}, place);
  gt_to_anchor_max.mutable_data<T>({gt_num}, place);

  auto anchor_by_gt_overlap_et =
      framework::EigenMatrix<T>::From(anchor_by_gt_overlap);
  auto anchor_to_gt_max_et =
      framework::EigenVector<T>::Flatten(anchor_to_gt_max);
  auto gt_to_anchor_max_et =
      framework::EigenVector<T>::Flatten(gt_to_anchor_max);
  auto anchor_to_gt_argmax_et =
      framework::EigenVector<int>::Flatten(anchor_to_gt_argmax);
  anchor_to_gt_max_et =
      anchor_by_gt_overlap_et.maximum(Eigen::DSizes<int, 1>(1));
  anchor_to_gt_argmax_et =
      anchor_by_gt_overlap_et.argmax(1).template cast<int>();
  gt_to_anchor_max_et =
      anchor_by_gt_overlap_et.maximum(Eigen::DSizes<int, 1>(0));

  // Follow the Faster RCNN's implementation
  ScoreAssign(anchor_by_gt_overlap_data, anchor_to_gt_max, gt_to_anchor_max,
              rpn_batch_size_per_im, rpn_fg_fraction, rpn_positive_overlap,
J
jerrywgz 已提交
309 310
              rpn_negative_overlap, &fg_inds, &bg_inds, &tgt_lbl, &fg_fake,
              &bbox_inside_weight, engine, use_random);
311 312 313

  int fg_num = fg_inds.size();
  int bg_num = bg_inds.size();
J
jerrywgz 已提交
314 315 316 317
  int fg_fake_num = fg_fake.size();
  gt_inds.reserve(fg_fake_num);
  for (int i = 0; i < fg_fake_num; ++i) {
    gt_inds.emplace_back(argmax[fg_fake[i]]);
318
  }
J
jerrywgz 已提交
319 320
  Tensor loc_index_t, score_index_t, tgt_lbl_t, gt_inds_t, bbox_inside_weight_t;
  int* loc_index_data = loc_index_t.mutable_data<int>({fg_fake_num}, place);
321 322 323
  int* score_index_data =
      score_index_t.mutable_data<int>({fg_num + bg_num}, place);
  int* tgt_lbl_data = tgt_lbl_t.mutable_data<int>({fg_num + bg_num}, place);
J
jerrywgz 已提交
324 325 326 327
  int* gt_inds_data = gt_inds_t.mutable_data<int>({fg_fake_num}, place);
  T* bbox_inside_weight_data =
      bbox_inside_weight_t.mutable_data<T>({fg_fake_num, 4}, place);
  std::copy(fg_fake.begin(), fg_fake.end(), loc_index_data);
328 329 330 331
  std::copy(fg_inds.begin(), fg_inds.end(), score_index_data);
  std::copy(bg_inds.begin(), bg_inds.end(), score_index_data + fg_num);
  std::copy(tgt_lbl.begin(), tgt_lbl.end(), tgt_lbl_data);
  std::copy(gt_inds.begin(), gt_inds.end(), gt_inds_data);
J
jerrywgz 已提交
332 333
  std::copy(bbox_inside_weight.begin(), bbox_inside_weight.end(),
            bbox_inside_weight_data);
334 335 336 337 338
  std::vector<Tensor> loc_score_tgtlbl_gt;
  loc_score_tgtlbl_gt.emplace_back(loc_index_t);
  loc_score_tgtlbl_gt.emplace_back(score_index_t);
  loc_score_tgtlbl_gt.emplace_back(tgt_lbl_t);
  loc_score_tgtlbl_gt.emplace_back(gt_inds_t);
J
jerrywgz 已提交
339
  loc_score_tgtlbl_gt.emplace_back(bbox_inside_weight_t);
340 341 342

  return loc_score_tgtlbl_gt;
}
343

344 345 346 347 348 349 350 351 352 353 354 355 356
template <typename T>
class RpnTargetAssignKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& context) const override {
    auto* anchor = context.Input<Tensor>("Anchor");  // (H*W*A) * 4
    auto* gt_boxes = context.Input<LoDTensor>("GtBoxes");
    auto* is_crowd = context.Input<LoDTensor>("IsCrowd");
    auto* im_info = context.Input<LoDTensor>("ImInfo");

    auto* loc_index = context.Output<LoDTensor>("LocationIndex");
    auto* score_index = context.Output<LoDTensor>("ScoreIndex");
    auto* tgt_bbox = context.Output<LoDTensor>("TargetBBox");
    auto* tgt_lbl = context.Output<LoDTensor>("TargetLabel");
J
jerrywgz 已提交
357
    auto* bbox_inside_weight = context.Output<LoDTensor>("BBoxInsideWeight");
358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373

    PADDLE_ENFORCE_EQ(gt_boxes->lod().size(), 1UL,
                      "RpnTargetAssignOp gt_boxes needs 1 level of LoD");
    PADDLE_ENFORCE_EQ(is_crowd->lod().size(), 1UL,
                      "RpnTargetAssignOp is_crowd needs 1 level of LoD");
    int64_t anchor_num = static_cast<int64_t>(anchor->dims()[0]);
    int64_t batch_num = static_cast<int64_t>(gt_boxes->lod().back().size() - 1);

    int rpn_batch_size_per_im = context.Attr<int>("rpn_batch_size_per_im");
    float rpn_straddle_thresh = context.Attr<float>("rpn_straddle_thresh");
    float rpn_positive_overlap = context.Attr<float>("rpn_positive_overlap");
    float rpn_negative_overlap = context.Attr<float>("rpn_negative_overlap");
    float rpn_fg_fraction = context.Attr<float>("rpn_fg_fraction");
    bool use_random = context.Attr<bool>("use_random");

    int64_t max_num = batch_num * rpn_batch_size_per_im;
374 375
    auto place = context.GetPlace();

376 377 378 379
    loc_index->mutable_data<int>({max_num}, place);
    score_index->mutable_data<int>({max_num}, place);
    tgt_bbox->mutable_data<T>({max_num, 4}, place);
    tgt_lbl->mutable_data<int>({max_num, 1}, place);
J
jerrywgz 已提交
380
    bbox_inside_weight->mutable_data<T>({max_num, 4}, place);
381 382 383 384
    auto& dev_ctx = context.device_context<platform::CPUDeviceContext>();

    std::random_device rnd;
    std::minstd_rand engine;
385
    int seed = rnd();
386 387
    engine.seed(seed);

388 389 390 391 392 393 394 395
    framework::LoD lod_loc, loc_score;
    std::vector<size_t> lod0_loc(1, 0);
    std::vector<size_t> lod0_score(1, 0);

    int total_loc_num = 0;
    int total_score_num = 0;
    auto gt_boxes_lod = gt_boxes->lod().back();
    auto is_crowd_lod = is_crowd->lod().back();
396
    for (int i = 0; i < batch_num; ++i) {
397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433
      Tensor gt_boxes_slice =
          gt_boxes->Slice(gt_boxes_lod[i], gt_boxes_lod[i + 1]);
      Tensor is_crowd_slice =
          is_crowd->Slice(is_crowd_lod[i], is_crowd_lod[i + 1]);
      Tensor im_info_slice = im_info->Slice(i, i + 1);
      auto* im_info_data = im_info_slice.data<T>();
      auto im_height = im_info_data[0];
      auto im_width = im_info_data[1];
      auto im_scale = im_info_data[2];

      // Filter straddle anchor
      std::vector<Tensor> filter_output = FilterStraddleAnchor<T>(
          dev_ctx, anchor, rpn_straddle_thresh, im_height, im_width);
      Tensor inds_inside = filter_output[0];
      Tensor inside_anchor = filter_output[1];

      // Filter crowd gt
      Tensor ncrowd_gt_boxes =
          FilterCrowdGt<T>(dev_ctx, &gt_boxes_slice, &is_crowd_slice);
      auto ncrowd_gt_boxes_et =
          framework::EigenTensor<T, 2>::From(ncrowd_gt_boxes);
      ncrowd_gt_boxes_et = ncrowd_gt_boxes_et * im_scale;

      Tensor anchor_by_gt_overlap;
      anchor_by_gt_overlap.mutable_data<T>(
          {inside_anchor.dims()[0], ncrowd_gt_boxes.dims()[0]}, place);
      BboxOverlaps<T>(inside_anchor, ncrowd_gt_boxes, &anchor_by_gt_overlap);

      auto loc_score_tgtlbl_gt = SampleRpnFgBgGt<T>(
          dev_ctx, anchor_by_gt_overlap, rpn_batch_size_per_im,
          rpn_positive_overlap, rpn_negative_overlap, rpn_fg_fraction, engine,
          use_random);

      Tensor sampled_loc_index = loc_score_tgtlbl_gt[0];
      Tensor sampled_score_index = loc_score_tgtlbl_gt[1];
      Tensor sampled_tgtlbl = loc_score_tgtlbl_gt[2];
      Tensor sampled_gt_index = loc_score_tgtlbl_gt[3];
J
jerrywgz 已提交
434
      Tensor sampled_bbox_inside_weight = loc_score_tgtlbl_gt[4];
435 436 437 438 439 440 441 442 443 444 445

      int loc_num = sampled_loc_index.dims()[0];
      int score_num = sampled_score_index.dims()[0];
      // unmap to all anchor
      Tensor sampled_loc_index_unmap, sampled_score_index_unmap;
      sampled_loc_index_unmap.mutable_data<int>({loc_num}, place);
      sampled_score_index_unmap.mutable_data<int>({score_num}, place);
      Gather<int>(inds_inside.data<int>(), 1, sampled_loc_index.data<int>(),
                  loc_num, sampled_loc_index_unmap.data<int>());
      Gather<int>(inds_inside.data<int>(), 1, sampled_score_index.data<int>(),
                  score_num, sampled_score_index_unmap.data<int>());
446 447

      // get target bbox deltas
448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472
      Tensor sampled_anchor, sampled_gt, sampled_tgt_bbox;
      auto* sampled_anchor_data =
          sampled_anchor.mutable_data<T>({loc_num, 4}, place);
      auto* sampled_gt_data = sampled_gt.mutable_data<T>({loc_num, 4}, place);
      Gather<T>(anchor->data<T>(), 4, sampled_loc_index_unmap.data<int>(),
                loc_num, sampled_anchor_data);
      Gather<T>(ncrowd_gt_boxes.data<T>(), 4, sampled_gt_index.data<int>(),
                loc_num, sampled_gt_data);
      sampled_tgt_bbox.mutable_data<T>({loc_num, 4}, place);
      BoxToDelta<T>(loc_num, sampled_anchor, sampled_gt, nullptr, false,
                    &sampled_tgt_bbox);

      // Add anchor offset
      int anchor_offset = i * anchor_num;
      auto sampled_loc_index_unmap_et =
          framework::EigenTensor<int, 1>::From(sampled_loc_index_unmap);
      sampled_loc_index_unmap_et = sampled_loc_index_unmap_et + anchor_offset;
      auto sampled_score_index_unmap_et =
          framework::EigenTensor<int, 1>::From(sampled_score_index_unmap);
      sampled_score_index_unmap_et =
          sampled_score_index_unmap_et + anchor_offset;
      AppendRpns<int>(loc_index, total_loc_num, &sampled_loc_index_unmap);
      AppendRpns<int>(score_index, total_score_num, &sampled_score_index_unmap);
      AppendRpns<T>(tgt_bbox, total_loc_num * 4, &sampled_tgt_bbox);
      AppendRpns<int>(tgt_lbl, total_score_num, &sampled_tgtlbl);
J
jerrywgz 已提交
473 474
      AppendRpns<T>(bbox_inside_weight, total_loc_num * 4,
                    &sampled_bbox_inside_weight);
475 476 477 478 479
      total_loc_num += loc_num;

      total_score_num += score_num;
      lod0_loc.emplace_back(total_loc_num);
      lod0_score.emplace_back(total_score_num);
Y
Yuan Gao 已提交
480 481
    }

482 483 484 485 486 487 488 489 490
    PADDLE_ENFORCE_LE(total_loc_num, max_num);
    PADDLE_ENFORCE_LE(total_score_num, max_num);

    lod_loc.emplace_back(lod0_loc);
    loc_score.emplace_back(lod0_score);
    loc_index->set_lod(lod_loc);
    score_index->set_lod(loc_score);
    tgt_bbox->set_lod(lod_loc);
    tgt_lbl->set_lod(loc_score);
J
jerrywgz 已提交
491
    bbox_inside_weight->set_lod(lod_loc);
492 493 494 495
    loc_index->Resize({total_loc_num});
    score_index->Resize({total_score_num});
    tgt_bbox->Resize({total_loc_num, 4});
    tgt_lbl->Resize({total_score_num, 1});
J
jerrywgz 已提交
496
    bbox_inside_weight->Resize({total_loc_num, 4});
Y
Yuan Gao 已提交
497 498 499 500 501 502
  }
};

class RpnTargetAssignOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
  void Make() override {
503 504
    AddInput("Anchor",
             "(Tensor) input anchor is a 2-D Tensor with shape [H*W*A, 4].");
505
    AddInput("GtBoxes",
506
             "(LoDTensor) input ground-truth bbox with shape [K, 4].");
507
    AddInput("IsCrowd",
508
             "(LoDTensor) input which indicates ground-truth is crowd.");
509 510 511 512 513 514 515 516 517 518 519 520
    AddInput("ImInfo",
             "(LoDTensor) input image information with shape [N, 3]. "
             "N is the batch size, each image information includes height, "
             "width and scale.");
    AddAttr<int>("rpn_batch_size_per_im",
                 "Total number of RPN examples per image.")
        .SetDefault(256);
    AddAttr<float>(
        "rpn_straddle_thresh",
        "Remove RPN anchors that go outside the image by straddle_thresh "
        "pixels, "
        "Set to -1 or a large value, e.g. 100000, to disable pruning anchors.");
Y
Yuan Gao 已提交
521 522 523 524 525 526 527 528 529 530 531
    AddAttr<float>(
        "rpn_positive_overlap",
        "Minimum overlap required between an anchor and ground-truth "
        "box for the (anchor, gt box) pair to be a positive example.")
        .SetDefault(0.7);
    AddAttr<float>(
        "rpn_negative_overlap",
        "Maximum overlap allowed between an anchor and ground-truth "
        "box for the (anchor, gt box) pair to be a negative examples.")
        .SetDefault(0.3);
    AddAttr<float>(
532
        "rpn_fg_fraction",
Y
Yuan Gao 已提交
533 534 535
        "Target fraction of RoI minibatch that "
        "is labeled foreground (i.e. class > 0), 0-th class is background.")
        .SetDefault(0.25);
536 537 538 539 540
    AddAttr<bool>("use_random",
                  "A flag indicating whether to use a ReservoirSampling. "
                  "NOTE: DO NOT set this flag to false in training. "
                  "Setting this flag to false is only useful in unittest.")
        .SetDefault(true);
Y
Yuan Gao 已提交
541 542 543 544 545 546 547 548 549
    AddOutput(
        "LocationIndex",
        "(Tensor), The indexes of foreground anchors in all RPN anchors, the "
        "shape of the LocationIndex is [F], F depends on the value of input "
        "tensor and attributes.");
    AddOutput(
        "ScoreIndex",
        "(Tensor), The indexes of foreground and background anchors in all "
        "RPN anchors(The rest anchors are ignored). The shape of the "
550
        "ScoreIndex is [F + B], F and B are sampled foreground and background "
551 552
        " number.");
    AddOutput("TargetBBox",
553
              "(Tensor), The target bbox deltas with shape "
554 555 556
              "[F, 4], F is the sampled foreground number.");
    AddOutput(
        "TargetLabel",
557
        "(Tensor<int>), The target labels of each anchor with shape "
558
        "[F + B, 1], F and B are sampled foreground and background number.");
J
jerrywgz 已提交
559
    AddOutput("BBoxInsideWeight",
J
jerrywgz 已提交
560 561
              "(Tensor), The bbox inside weight with shape "
              "[F, 4], F is the sampled foreground number.");
Y
Yuan Gao 已提交
562
    AddComment(R"DOC(
563
This operator can be, for a given set of ground truth bboxes and the
Y
Yuan Gao 已提交
564
anchors, to assign classification and regression targets to each prediction.
565
The ScoreIndex and LocationIndex will be generated according to the anchor-groundtruth IOU.
Y
Yuan Gao 已提交
566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586
The rest anchors would not contibute to the RPN training loss

ScoreIndex is composed of foreground anchor indexes(positive labels) and
background anchor indexes(negative labels). LocationIndex is exactly same
as the foreground anchor indexes since we can not assign regression target to 
the background anchors.

The classification targets(TargetLabel) is a binary class label (of being
an object or not). Following the paper of Faster-RCNN, the positive labels
are two kinds of anchors: (i) the anchor/anchors with the highest IoU
overlap with a ground-truth box, or (ii) an anchor that has an IoU overlap
higher than rpn_positive_overlap(0.7) with any ground-truth box. Note that
a single ground-truth box may assign positive labels to multiple anchors.
A non-positive anchor is when its IoU ratio is lower than rpn_negative_overlap
(0.3) for all ground-truth boxes. Anchors that are neither positive nor
negative do not contribute to the training objective.

)DOC");
  }
};

587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728
class RetinanetTargetAssignOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
  void Make() override {
    AddInput("Anchor",
             "(Tensor) input anchor is a 2-D Tensor with shape [H*W*A, 4].");
    AddInput("GtBoxes",
             "(LoDTensor) input ground-truth bbox with shape [K, 4].");
    AddInput("GtLabels",
             "(LoDTensor) input ground-truth label with shape [K, 1].");
    AddInput("IsCrowd",
             "(LoDTensor) input which indicates ground-truth is crowd.");
    AddInput("ImInfo",
             "(LoDTensor) input image information with shape [N, 3]. "
             "N is the batch size, each image information includes height, "
             "width and scale.");
    AddAttr<float>(
        "positive_overlap",
        "Minimum overlap required between an anchor and ground-truth "
        "box for the (anchor, gt box) pair to be a positive example.")
        .SetDefault(0.5);
    AddAttr<float>(
        "negative_overlap",
        "Maximum overlap allowed between an anchor and ground-truth "
        "box for the (anchor, gt box) pair to be a negative examples.")
        .SetDefault(0.4);
    AddOutput(
        "LocationIndex",
        "(Tensor), The indexes of foreground anchors in all anchors, the "
        "shape of the LocationIndex is [F], F depends on the value of input "
        "tensor and attributes.");
    AddOutput(
        "ScoreIndex",
        "(Tensor), The indexes of foreground and background anchors in all "
        "RPN anchors(The rest anchors are ignored). The shape of the "
        "ScoreIndex is [F + B], F and B are foreground and background "
        " number.");
    AddOutput("TargetBBox",
              "(Tensor), The target bbox deltas with shape "
              "[F, 4], F is the foreground number.");
    AddOutput("TargetLabel",
              "(Tensor<int>), The target labels of each anchor with shape "
              "[F + B, 1], F and B are foreground and background number.");
    AddOutput("BBoxInsideWeight",
              "(Tensor), The bbox inside weight with shape "
              "[F, 4], F is the foreground number.");
    AddOutput("ForegroundNumber",
              "(Tensor), The foreground number. "
              "[1, 1].");
    AddComment(R"DOC(
    This layer can be, for given the Intersection-over-Union (IoU) overlap
    between anchors and ground truth boxes, to assign classification and
    regression targets to each anchor, these target labels are used for
    train retinanet. 
    
    Every anchor is assigned with a length C one-hot vector of
    classification targets, and a 4-vector of box regression targets,
    where C is the class number. The assignment rules are as followed:
    
    1. Anchors are assigned to ground-truth boxes when: (i) it has the highest
    IoU overlap with a ground-truth box, or (ii) it has an IoU overlap higher
    than positive_overlap(0.5) with any ground-truth box.
    
    2. Anchors are assigned to background when its IoU ratio is lower than
    negative_overlap (0.4) for all ground-truth boxes.

    When an anchor is assigned with a ground-truth box which is the i-th category,
    the i-th entry in its C vector of targets is set to 1 and all other entries
    are set to 0. When an anchor is assigned with background, all entries are set
    to 0. Anchors that are not assigned do not contribute to the training
    objective. The regression targets are the encoded ground-truth boxes
    associated with the assigned anchors.

)DOC");
  }
};

class RetinanetTargetAssignOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext* ctx) const override {
    PADDLE_ENFORCE(
        ctx->HasInput("Anchor"),
        "Input(Anchor) of RetinanetTargetAssignOp should not be null");
    PADDLE_ENFORCE(
        ctx->HasInput("GtBoxes"),
        "Input(GtBoxes) of RetinanetTargetAssignOp should not be null");
    PADDLE_ENFORCE(
        ctx->HasInput("GtLabels"),
        "Input(GtLabels) of RetinanetTargetAssignOp should not be null");
    PADDLE_ENFORCE(
        ctx->HasInput("IsCrowd"),
        "Input(Anchor) of RetinanetTargetAssignOp should not be null");
    PADDLE_ENFORCE(
        ctx->HasInput("ImInfo"),
        "Input(ImInfo) of RetinanetTargetAssignOp should not be null");

    PADDLE_ENFORCE(
        ctx->HasOutput("LocationIndex"),
        "Output(LocationIndex) of RetinanetTargetAssignOp should not be null");
    PADDLE_ENFORCE(
        ctx->HasOutput("ScoreIndex"),
        "Output(ScoreIndex) of RetinanetTargetAssignOp should not be null");
    PADDLE_ENFORCE(
        ctx->HasOutput("TargetLabel"),
        "Output(TargetLabel) of RetinanetTargetAssignOp should not be null");
    PADDLE_ENFORCE(
        ctx->HasOutput("TargetBBox"),
        "Output(TargetBBox) of RetinanetTargetAssignOp should not be null");
    PADDLE_ENFORCE(ctx->HasOutput("BBoxInsideWeight"),
                   "Output(BBoxInsideWeight) of RetinanetTargetAssignOp should "
                   "not be null");
    PADDLE_ENFORCE(ctx->HasOutput("ForegroundNumber"),
                   "Output(ForegroundNumber) of RetinanetTargetAssignOp should "
                   "not be null");

    auto anchor_dims = ctx->GetInputDim("Anchor");
    auto gt_boxes_dims = ctx->GetInputDim("GtBoxes");
    auto gt_labels_dims = ctx->GetInputDim("GtLabels");
    auto im_info_dims = ctx->GetInputDim("ImInfo");

    PADDLE_ENFORCE_EQ(anchor_dims.size(), 2,
                      "The rank of Input(Anchor) must be 2.");
    PADDLE_ENFORCE_EQ(gt_boxes_dims.size(), 2,
                      "The rank of Input(GtBoxes) must be 2.");
    PADDLE_ENFORCE_EQ(gt_labels_dims.size(), 2,
                      "The rank of Input(GtLabels) must be 2.");
    PADDLE_ENFORCE_EQ(im_info_dims.size(), 2,
                      "The rank of Input(ImInfo) must be 2.");

    ctx->SetOutputDim("LocationIndex", {gt_labels_dims[0]});
    ctx->SetOutputDim("ScoreIndex", {gt_labels_dims[0]});
    ctx->SetOutputDim("TargetBBox", {gt_labels_dims[0], 4});
    ctx->SetOutputDim("TargetLabel", {gt_labels_dims[0], 1});
    ctx->SetOutputDim("BBoxInsideWeight", {gt_labels_dims[0], 4});
    ctx->SetOutputDim("ForegroundNumber", {gt_labels_dims[0], 1});
  }

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
    return framework::OpKernelType(
729
        OperatorWithKernel::IndicateVarDataType(ctx, "Anchor"),
730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020
        platform::CPUPlace());
  }
};

template <typename T>
std::vector<Tensor> FilterCrowdGtBoxLabel(
    const platform::CPUDeviceContext& context, Tensor* gt_boxes,
    Tensor* gt_labels, Tensor* is_crowd) {
  int gt_num = gt_boxes->dims()[0];
  std::vector<int> not_crowd_inds;
  auto* is_crowd_data = is_crowd->data<int>();
  for (int i = 0; i < gt_num; ++i) {
    if (is_crowd_data[i] == 0) {
      not_crowd_inds.emplace_back(i);
    }
  }
  int ncrowd_num = not_crowd_inds.size();
  Tensor ncrowd_gt_boxes, ncrowd_gt_labels;
  T* ncrowd_gt_boxes_data =
      ncrowd_gt_boxes.mutable_data<T>({ncrowd_num, 4}, context.GetPlace());
  int* ncrowd_gt_labels_data =
      ncrowd_gt_labels.mutable_data<int>({ncrowd_num, 1}, context.GetPlace());
  Gather<T>(gt_boxes->data<T>(), 4, not_crowd_inds.data(), ncrowd_num,
            ncrowd_gt_boxes_data);
  Gather<int>(gt_labels->data<int>(), 1, not_crowd_inds.data(), ncrowd_num,
              ncrowd_gt_labels_data);
  std::vector<Tensor> res;
  res.emplace_back(ncrowd_gt_boxes);
  res.emplace_back(ncrowd_gt_labels);
  return res;
}

template <typename T>
std::vector<Tensor> GetAllFgBgGt(const platform::CPUDeviceContext& ctx,
                                 const Tensor& anchor_by_gt_overlap,
                                 const Tensor& ncrowd_gt_labels,
                                 const float positive_overlap,
                                 const float negative_overlap,
                                 std::minstd_rand engine) {
  auto* anchor_by_gt_overlap_data = anchor_by_gt_overlap.data<T>();
  int anchor_num = anchor_by_gt_overlap.dims()[0];
  int gt_num = anchor_by_gt_overlap.dims()[1];

  std::vector<int> fg_inds;
  std::vector<int> bg_inds;
  std::vector<int> gt_inds;
  std::vector<int> tgt_lbl;
  std::vector<int> fg_fake;
  std::vector<T> bbox_inside_weight;
  // Calculate the max IoU between anchors and gt boxes
  // Map from anchor to gt box that has highest overlap
  auto place = ctx.GetPlace();
  Tensor anchor_to_gt_max, anchor_to_gt_argmax, gt_to_anchor_max;
  anchor_to_gt_max.mutable_data<T>({anchor_num}, place);
  int* argmax = anchor_to_gt_argmax.mutable_data<int>({anchor_num}, place);
  gt_to_anchor_max.mutable_data<T>({gt_num}, place);

  auto anchor_by_gt_overlap_et =
      framework::EigenMatrix<T>::From(anchor_by_gt_overlap);
  auto anchor_to_gt_max_et =
      framework::EigenVector<T>::Flatten(anchor_to_gt_max);
  auto gt_to_anchor_max_et =
      framework::EigenVector<T>::Flatten(gt_to_anchor_max);
  auto anchor_to_gt_argmax_et =
      framework::EigenVector<int>::Flatten(anchor_to_gt_argmax);
  anchor_to_gt_max_et =
      anchor_by_gt_overlap_et.maximum(Eigen::DSizes<int, 1>(1));
  anchor_to_gt_argmax_et =
      anchor_by_gt_overlap_et.argmax(1).template cast<int>();
  gt_to_anchor_max_et =
      anchor_by_gt_overlap_et.maximum(Eigen::DSizes<int, 1>(0));

  ScoreAssign(anchor_by_gt_overlap_data, anchor_to_gt_max, gt_to_anchor_max, -1,
              -1, positive_overlap, negative_overlap, &fg_inds, &bg_inds,
              &tgt_lbl, &fg_fake, &bbox_inside_weight, engine, false);
  const int* gt_labels_data = ncrowd_gt_labels.data<int>();
  int64_t fg_num = fg_inds.size();
  for (int64_t i = 0; i < fg_num; ++i) {
    int gt_idx = argmax[fg_inds[i]];
    tgt_lbl[i] = gt_labels_data[gt_idx];
  }

  int bg_num = bg_inds.size();
  int fg_fake_num = fg_fake.size();
  gt_inds.reserve(fg_fake_num);
  for (int i = 0; i < fg_fake_num; ++i) {
    gt_inds.emplace_back(argmax[fg_fake[i]]);
  }

  Tensor loc_index_t, score_index_t, tgt_lbl_t, gt_inds_t, bbox_inside_weight_t;
  Tensor fg_num_t;
  int* loc_index_data = loc_index_t.mutable_data<int>({fg_fake_num}, place);
  int* score_index_data =
      score_index_t.mutable_data<int>({fg_num + bg_num}, place);
  int* tgt_lbl_data = tgt_lbl_t.mutable_data<int>({fg_num + bg_num}, place);
  int* gt_inds_data = gt_inds_t.mutable_data<int>({fg_fake_num}, place);
  int* fg_num_data = fg_num_t.mutable_data<int>({1}, place);
  T* bbox_inside_weight_data =
      bbox_inside_weight_t.mutable_data<T>({fg_fake_num, 4}, place);
  std::copy(fg_fake.begin(), fg_fake.end(), loc_index_data);
  std::copy(fg_inds.begin(), fg_inds.end(), score_index_data);
  std::copy(bg_inds.begin(), bg_inds.end(), score_index_data + fg_num);
  std::copy(tgt_lbl.begin(), tgt_lbl.end(), tgt_lbl_data);
  std::copy(gt_inds.begin(), gt_inds.end(), gt_inds_data);
  std::copy(bbox_inside_weight.begin(), bbox_inside_weight.end(),
            bbox_inside_weight_data);
  fg_num_data[0] = fg_fake.size() + 1;
  std::vector<Tensor> loc_score_tgtlbl_gt;
  loc_score_tgtlbl_gt.emplace_back(loc_index_t);
  loc_score_tgtlbl_gt.emplace_back(score_index_t);
  loc_score_tgtlbl_gt.emplace_back(tgt_lbl_t);
  loc_score_tgtlbl_gt.emplace_back(gt_inds_t);
  loc_score_tgtlbl_gt.emplace_back(bbox_inside_weight_t);
  loc_score_tgtlbl_gt.emplace_back(fg_num_t);

  return loc_score_tgtlbl_gt;
}

template <typename T>
class RetinanetTargetAssignKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& context) const override {
    auto* anchor = context.Input<Tensor>("Anchor");  // (H*W*A) * 4
    auto* gt_boxes = context.Input<LoDTensor>("GtBoxes");
    auto* gt_labels = context.Input<LoDTensor>("GtLabels");
    auto* is_crowd = context.Input<LoDTensor>("IsCrowd");
    auto* im_info = context.Input<LoDTensor>("ImInfo");

    auto* loc_index = context.Output<LoDTensor>("LocationIndex");
    auto* score_index = context.Output<LoDTensor>("ScoreIndex");
    auto* tgt_bbox = context.Output<LoDTensor>("TargetBBox");
    auto* tgt_lbl = context.Output<LoDTensor>("TargetLabel");
    auto* bbox_inside_weight = context.Output<LoDTensor>("BBoxInsideWeight");
    auto* fg_num = context.Output<LoDTensor>("ForegroundNumber");

    PADDLE_ENFORCE_EQ(gt_boxes->lod().size(), 1UL,
                      "RetinanetTargetAssignOp gt_boxes needs 1 level of LoD");
    PADDLE_ENFORCE_EQ(gt_labels->lod().size(), 1UL,
                      "RetinanetTargetAssignOp gt_boxes needs 1 level of LoD");
    PADDLE_ENFORCE_EQ(is_crowd->lod().size(), 1UL,
                      "RetinanetTargetAssignOp is_crowd needs 1 level of LoD");

    int64_t anchor_num = static_cast<int64_t>(anchor->dims()[0]);
    int64_t batch_num = static_cast<int64_t>(gt_boxes->lod().back().size() - 1);

    float positive_overlap = context.Attr<float>("positive_overlap");
    float negative_overlap = context.Attr<float>("negative_overlap");

    int64_t max_num = batch_num * anchor_num;
    auto place = context.GetPlace();

    loc_index->mutable_data<int>({max_num}, place);
    score_index->mutable_data<int>({max_num}, place);
    tgt_bbox->mutable_data<T>({max_num, 4}, place);
    tgt_lbl->mutable_data<int>({max_num, 1}, place);
    bbox_inside_weight->mutable_data<T>({max_num, 4}, place);
    fg_num->mutable_data<int>({batch_num, 1}, place);
    auto& dev_ctx = context.device_context<platform::CPUDeviceContext>();

    std::random_device rnd;
    std::minstd_rand engine;
    int seed = rnd();
    engine.seed(seed);

    framework::LoD lod_loc, loc_score, lod_fg;
    std::vector<size_t> lod0_loc(1, 0);
    std::vector<size_t> lod0_score(1, 0);
    std::vector<size_t> lod0_fg(1, 0);

    int total_loc_num = 0;
    int total_score_num = 0;
    int total_fg_num = 0;
    auto gt_boxes_lod = gt_boxes->lod().back();
    auto gt_labels_lod = gt_labels->lod().back();
    auto is_crowd_lod = is_crowd->lod().back();
    for (int i = 0; i < batch_num; ++i) {
      Tensor gt_boxes_slice =
          gt_boxes->Slice(gt_boxes_lod[i], gt_boxes_lod[i + 1]);
      Tensor gt_labels_slice =
          gt_labels->Slice(gt_labels_lod[i], gt_labels_lod[i + 1]);
      Tensor is_crowd_slice =
          is_crowd->Slice(is_crowd_lod[i], is_crowd_lod[i + 1]);
      Tensor im_info_slice = im_info->Slice(i, i + 1);
      auto* im_info_data = im_info_slice.data<T>();
      auto im_height = im_info_data[0];
      auto im_width = im_info_data[1];
      auto im_scale = im_info_data[2];

      // Filter straddle anchor
      std::vector<Tensor> filter_output =
          FilterStraddleAnchor<T>(dev_ctx, anchor, -1, im_height, im_width);
      Tensor inds_inside = filter_output[0];
      Tensor inside_anchor = filter_output[1];

      // Filter crowd gt
      std::vector<Tensor> ncrowd_output = FilterCrowdGtBoxLabel<T>(
          dev_ctx, &gt_boxes_slice, &gt_labels_slice, &is_crowd_slice);
      Tensor ncrowd_gt_boxes = ncrowd_output[0];
      Tensor ncrowd_gt_labels = ncrowd_output[1];

      auto ncrowd_gt_boxes_et =
          framework::EigenTensor<T, 2>::From(ncrowd_gt_boxes);
      ncrowd_gt_boxes_et = ncrowd_gt_boxes_et * im_scale;

      Tensor anchor_by_gt_overlap;
      anchor_by_gt_overlap.mutable_data<T>(
          {inside_anchor.dims()[0], ncrowd_gt_boxes.dims()[0]}, place);
      BboxOverlaps<T>(inside_anchor, ncrowd_gt_boxes, &anchor_by_gt_overlap);

      auto loc_score_tgtlbl_gt =
          GetAllFgBgGt<T>(dev_ctx, anchor_by_gt_overlap, ncrowd_gt_labels,
                          positive_overlap, negative_overlap, engine);

      Tensor sampled_loc_index = loc_score_tgtlbl_gt[0];
      Tensor sampled_score_index = loc_score_tgtlbl_gt[1];
      Tensor sampled_tgtlbl = loc_score_tgtlbl_gt[2];
      Tensor sampled_gt_index = loc_score_tgtlbl_gt[3];
      Tensor sampled_bbox_inside_weight = loc_score_tgtlbl_gt[4];
      Tensor sampled_fg_num = loc_score_tgtlbl_gt[5];

      int loc_num = sampled_loc_index.dims()[0];
      int score_num = sampled_score_index.dims()[0];
      // unmap to all anchor
      Tensor sampled_loc_index_unmap, sampled_score_index_unmap;
      sampled_loc_index_unmap.mutable_data<int>({loc_num}, place);
      sampled_score_index_unmap.mutable_data<int>({score_num}, place);
      Gather<int>(inds_inside.data<int>(), 1, sampled_loc_index.data<int>(),
                  loc_num, sampled_loc_index_unmap.data<int>());
      Gather<int>(inds_inside.data<int>(), 1, sampled_score_index.data<int>(),
                  score_num, sampled_score_index_unmap.data<int>());

      // get target bbox deltas
      Tensor sampled_anchor, sampled_gt, sampled_tgt_bbox;
      auto* sampled_anchor_data =
          sampled_anchor.mutable_data<T>({loc_num, 4}, place);
      auto* sampled_gt_data = sampled_gt.mutable_data<T>({loc_num, 4}, place);
      Gather<T>(anchor->data<T>(), 4, sampled_loc_index_unmap.data<int>(),
                loc_num, sampled_anchor_data);
      Gather<T>(ncrowd_gt_boxes.data<T>(), 4, sampled_gt_index.data<int>(),
                loc_num, sampled_gt_data);
      sampled_tgt_bbox.mutable_data<T>({loc_num, 4}, place);
      BoxToDelta<T>(loc_num, sampled_anchor, sampled_gt, nullptr, false,
                    &sampled_tgt_bbox);

      // Add anchor offset
      int anchor_offset = i * anchor_num;
      auto sampled_loc_index_unmap_et =
          framework::EigenTensor<int, 1>::From(sampled_loc_index_unmap);
      sampled_loc_index_unmap_et = sampled_loc_index_unmap_et + anchor_offset;
      auto sampled_score_index_unmap_et =
          framework::EigenTensor<int, 1>::From(sampled_score_index_unmap);
      sampled_score_index_unmap_et =
          sampled_score_index_unmap_et + anchor_offset;
      AppendRpns<int>(loc_index, total_loc_num, &sampled_loc_index_unmap);
      AppendRpns<int>(score_index, total_score_num, &sampled_score_index_unmap);
      AppendRpns<T>(tgt_bbox, total_loc_num * 4, &sampled_tgt_bbox);
      AppendRpns<int>(tgt_lbl, total_score_num, &sampled_tgtlbl);
      AppendRpns<T>(bbox_inside_weight, total_loc_num * 4,
                    &sampled_bbox_inside_weight);
      AppendRpns<int>(fg_num, total_fg_num, &sampled_fg_num);

      total_loc_num += loc_num;
      total_score_num += score_num;
      total_fg_num += 1;
      lod0_loc.emplace_back(total_loc_num);
      lod0_score.emplace_back(total_score_num);
      lod0_fg.emplace_back(total_fg_num);
    }

    PADDLE_ENFORCE_LE(total_loc_num, max_num);
    PADDLE_ENFORCE_LE(total_score_num, max_num);
    PADDLE_ENFORCE_LE(total_fg_num, batch_num);

    lod_loc.emplace_back(lod0_loc);
    loc_score.emplace_back(lod0_score);
    lod_fg.emplace_back(lod0_fg);
    loc_index->set_lod(lod_loc);
    score_index->set_lod(loc_score);
    tgt_bbox->set_lod(lod_loc);
    tgt_lbl->set_lod(loc_score);
    bbox_inside_weight->set_lod(lod_loc);
    fg_num->set_lod(lod_fg);
    loc_index->Resize({total_loc_num});
    score_index->Resize({total_score_num});
    tgt_bbox->Resize({total_loc_num, 4});
    tgt_lbl->Resize({total_score_num, 1});
    bbox_inside_weight->Resize({total_loc_num, 4});
    fg_num->Resize({total_fg_num, 1});
  }
};

Y
Yuan Gao 已提交
1021 1022 1023 1024 1025 1026 1027 1028 1029
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
REGISTER_OPERATOR(rpn_target_assign, ops::RpnTargetAssignOp,
                  ops::RpnTargetAssignOpMaker,
                  paddle::framework::EmptyGradOpMaker);
REGISTER_OP_CPU_KERNEL(rpn_target_assign, ops::RpnTargetAssignKernel<float>,
                       ops::RpnTargetAssignKernel<double>);
1030 1031 1032 1033 1034 1035
REGISTER_OPERATOR(retinanet_target_assign, ops::RetinanetTargetAssignOp,
                  ops::RetinanetTargetAssignOpMaker,
                  paddle::framework::EmptyGradOpMaker);
REGISTER_OP_CPU_KERNEL(retinanet_target_assign,
                       ops::RetinanetTargetAssignKernel<float>,
                       ops::RetinanetTargetAssignKernel<double>);