rpn_target_assign_op.cc 22.6 KB
Newer Older
Y
Yuan Gao 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include <random>
#include "paddle/fluid/framework/op_registry.h"
17
#include "paddle/fluid/operators/detection/bbox_util.h"
Y
Yuan Gao 已提交
18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33
#include "paddle/fluid/operators/math/math_function.h"

namespace paddle {
namespace operators {

using Tensor = framework::Tensor;
using LoDTensor = framework::LoDTensor;
template <typename T, int MajorType = Eigen::RowMajor,
          typename IndexType = Eigen::DenseIndex>
using EigenMatrix = framework::EigenMatrix<T, MajorType, IndexType>;

class RpnTargetAssignOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext* ctx) const override {
34 35 36 37 38 39 40 41
    PADDLE_ENFORCE(ctx->HasInput("Anchor"),
                   "Input(Anchor) of RpnTargetAssignOp should not be null");
    PADDLE_ENFORCE(ctx->HasInput("GtBoxes"),
                   "Input(GtBoxes) of RpnTargetAssignOp should not be null");
    PADDLE_ENFORCE(ctx->HasInput("IsCrowd"),
                   "Input(Anchor) of RpnTargetAssignOp should not be null");
    PADDLE_ENFORCE(ctx->HasInput("ImInfo"),
                   "Input(ImInfo) of RpnTargetAssignOp should not be null");
Y
Yuan Gao 已提交
42 43 44 45 46 47 48 49 50 51

    PADDLE_ENFORCE(
        ctx->HasOutput("LocationIndex"),
        "Output(LocationIndex) of RpnTargetAssignOp should not be null");
    PADDLE_ENFORCE(
        ctx->HasOutput("ScoreIndex"),
        "Output(ScoreIndex) of RpnTargetAssignOp should not be null");
    PADDLE_ENFORCE(
        ctx->HasOutput("TargetLabel"),
        "Output(TargetLabel) of RpnTargetAssignOp should not be null");
52 53 54 55 56 57 58 59 60 61 62 63 64 65
    PADDLE_ENFORCE(
        ctx->HasOutput("TargetBBox"),
        "Output(TargetBBox) of RpnTargetAssignOp should not be null");

    auto anchor_dims = ctx->GetInputDim("Anchor");
    auto gt_boxes_dims = ctx->GetInputDim("GtBoxes");
    auto is_crowd_dims = ctx->GetInputDim("IsCrowd");
    auto im_info_dims = ctx->GetInputDim("ImInfo");
    PADDLE_ENFORCE_EQ(anchor_dims.size(), 2,
                      "The rank of Input(Anchor) must be 2.");
    PADDLE_ENFORCE_EQ(gt_boxes_dims.size(), 2,
                      "The rank of Input(GtBoxes) must be 2.");
    PADDLE_ENFORCE_EQ(im_info_dims.size(), 2,
                      "The rank of Input(ImInfo) must be 2.");
66 67 68 69 70 71 72 73 74 75 76 77

    ctx->SetOutputDim("LocationIndex", {-1});
    ctx->SetOutputDim("ScoreIndex", {-1});
    ctx->SetOutputDim("TargetLabel", {-1, 1});
    ctx->SetOutputDim("TargetBBox", {-1, 4});
  }

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
    return framework::OpKernelType(
        framework::ToDataType(
78
            ctx.Input<framework::LoDTensor>("Anchor")->type()),
79
        platform::CPUPlace());
Y
Yuan Gao 已提交
80 81 82 83
  }
};

template <typename T>
84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199
void AppendRpns(LoDTensor* out, int64_t offset, Tensor* to_add) {
  auto* out_data = out->data<T>();
  auto* to_add_data = to_add->data<T>();
  memcpy(out_data + offset, to_add_data, to_add->numel() * sizeof(T));
}

template <typename T>
std::vector<Tensor> FilterStraddleAnchor(
    const platform::CPUDeviceContext& context, const Tensor* anchor,
    const float rpn_straddle_thresh, T im_height, T im_width) {
  std::vector<int> inds_inside;
  int anchor_num = anchor->dims()[0];
  auto* anchor_data = anchor->data<T>();
  if (rpn_straddle_thresh >= 0) {
    int index;
    for (int i = 0; i < anchor_num; ++i) {
      index = i * 4;
      if ((anchor_data[index + 0] >= -rpn_straddle_thresh) &&
          (anchor_data[index + 1] >= -rpn_straddle_thresh) &&
          (anchor_data[index + 2] < im_width + rpn_straddle_thresh) &&
          (anchor_data[index + 3] < im_height + rpn_straddle_thresh)) {
        inds_inside.emplace_back(i);
      }
    }
  } else {
    for (int i = 0; i < anchor_num; ++i) {
      inds_inside.emplace_back(i);
    }
  }
  int inside_num = inds_inside.size();
  Tensor inds_inside_t;
  int* inds_inside_data =
      inds_inside_t.mutable_data<int>({inside_num}, context.GetPlace());
  std::copy(inds_inside.begin(), inds_inside.end(), inds_inside_data);
  Tensor inside_anchor_t;
  T* inside_anchor_data =
      inside_anchor_t.mutable_data<T>({inside_num, 4}, context.GetPlace());
  Gather<T>(anchor->data<T>(), 4, inds_inside_data, inside_num,
            inside_anchor_data);
  std::vector<Tensor> res;
  res.emplace_back(inds_inside_t);
  res.emplace_back(inside_anchor_t);
  return res;
}

template <typename T>
Tensor FilterCrowdGt(const platform::CPUDeviceContext& context,
                     Tensor* gt_boxes, Tensor* is_crowd) {
  int gt_num = gt_boxes->dims()[0];
  std::vector<int> not_crowd_inds;
  auto* is_crowd_data = is_crowd->data<int>();
  for (int i = 0; i < gt_num; ++i) {
    if (is_crowd_data[i] == 0) {
      not_crowd_inds.emplace_back(i);
    }
  }
  int ncrowd_num = not_crowd_inds.size();
  Tensor ncrowd_gt_boxes;
  T* ncrowd_gt_boxes_data =
      ncrowd_gt_boxes.mutable_data<T>({ncrowd_num, 4}, context.GetPlace());
  Gather<T>(gt_boxes->data<T>(), 4, not_crowd_inds.data(), ncrowd_num,
            ncrowd_gt_boxes_data);
  return ncrowd_gt_boxes;
}

void ReservoirSampling(const int num, std::vector<int>* inds,
                       std::minstd_rand engine, bool use_random) {
  std::uniform_real_distribution<float> uniform(0, 1);
  size_t len = inds->size();
  if (len > static_cast<size_t>(num)) {
    if (use_random) {
      for (size_t i = num; i < len; ++i) {
        int rng_ind = std::floor(uniform(engine) * i);
        if (rng_ind < num)
          std::iter_swap(inds->begin() + rng_ind, inds->begin() + i);
      }
    }
    inds->resize(num);
  }
}

template <typename T>
void ScoreAssign(const T* anchor_by_gt_overlap_data,
                 const Tensor& anchor_to_gt_max, const Tensor& gt_to_anchor_max,
                 const int rpn_batch_size_per_im, const float rpn_fg_fraction,
                 const float rpn_positive_overlap,
                 const float rpn_negative_overlap, std::vector<int>* fg_inds,
                 std::vector<int>* bg_inds, std::vector<int>* tgt_lbl,
                 std::minstd_rand engine, bool use_random) {
  float epsilon = 0.00001;
  int anchor_num = anchor_to_gt_max.dims()[0];
  int gt_num = gt_to_anchor_max.dims()[0];
  std::vector<int> target_label(anchor_num, -1);
  std::vector<int> fg_inds_fake;
  std::vector<int> bg_inds_fake;
  const T* anchor_to_gt_max_data = anchor_to_gt_max.data<T>();
  const T* gt_to_anchor_max_data = gt_to_anchor_max.data<T>();
  // TODO(buxingyuan): Match with Detectron now
  // but it seems here is a bug in two directions assignment
  // in which the later one may overwrites the former one.
  for (int64_t i = 0; i < anchor_num; ++i) {
    bool is_anchors_with_max_overlap = false;
    for (int64_t j = 0; j < gt_num; ++j) {
      T value = anchor_by_gt_overlap_data[i * gt_num + j];
      T diff = std::abs(value - gt_to_anchor_max_data[j]);
      if (diff < epsilon) {
        is_anchors_with_max_overlap = true;
        break;
      }
    }
    bool is_anchor_great_than_thresh =
        (anchor_to_gt_max_data[i] >= rpn_positive_overlap);
    if (is_anchors_with_max_overlap || is_anchor_great_than_thresh) {
      fg_inds_fake.push_back(i);
    }
  }
200

201 202 203 204 205 206 207
  // Reservoir Sampling
  int fg_num = static_cast<int>(rpn_fg_fraction * rpn_batch_size_per_im);
  ReservoirSampling(fg_num, &fg_inds_fake, engine, use_random);
  fg_num = static_cast<int>(fg_inds_fake.size());
  for (int64_t i = 0; i < fg_num; ++i) {
    target_label[fg_inds_fake[i]] = 1;
  }
208

209 210 211 212 213 214 215 216 217 218 219
  int bg_num = rpn_batch_size_per_im - fg_num;
  for (int64_t i = 0; i < anchor_num; ++i) {
    if (anchor_to_gt_max_data[i] < rpn_negative_overlap) {
      bg_inds_fake.push_back(i);
    }
  }
  ReservoirSampling(bg_num, &bg_inds_fake, engine, use_random);
  bg_num = static_cast<int>(bg_inds_fake.size());
  for (int64_t i = 0; i < bg_num; ++i) {
    target_label[bg_inds_fake[i]] = 0;
  }
220

221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286
  for (int64_t i = 0; i < anchor_num; ++i) {
    if (target_label[i] == 1) fg_inds->emplace_back(i);
    if (target_label[i] == 0) bg_inds->emplace_back(i);
  }
  fg_num = fg_inds->size();
  bg_num = bg_inds->size();

  tgt_lbl->resize(fg_num + bg_num, 0);
  std::vector<int> fg_lbl(fg_num, 1);
  std::vector<int> bg_lbl(bg_num, 0);
  std::copy(fg_lbl.begin(), fg_lbl.end(), tgt_lbl->data());
  std::copy(bg_lbl.begin(), bg_lbl.end(), tgt_lbl->data() + fg_num);
}

template <typename T>
std::vector<Tensor> SampleRpnFgBgGt(const platform::CPUDeviceContext& ctx,
                                    const Tensor& anchor_by_gt_overlap,
                                    const int rpn_batch_size_per_im,
                                    const float rpn_positive_overlap,
                                    const float rpn_negative_overlap,
                                    const float rpn_fg_fraction,
                                    std::minstd_rand engine, bool use_random) {
  auto* anchor_by_gt_overlap_data = anchor_by_gt_overlap.data<T>();
  int anchor_num = anchor_by_gt_overlap.dims()[0];
  int gt_num = anchor_by_gt_overlap.dims()[1];

  std::vector<int> fg_inds;
  std::vector<int> bg_inds;
  std::vector<int> gt_inds;
  std::vector<int> tgt_lbl;

  // Calculate the max IoU between anchors and gt boxes
  // Map from anchor to gt box that has highest overlap
  auto place = ctx.GetPlace();
  Tensor anchor_to_gt_max, anchor_to_gt_argmax, gt_to_anchor_max;
  anchor_to_gt_max.mutable_data<T>({anchor_num}, place);
  int* argmax = anchor_to_gt_argmax.mutable_data<int>({anchor_num}, place);
  gt_to_anchor_max.mutable_data<T>({gt_num}, place);

  auto anchor_by_gt_overlap_et =
      framework::EigenMatrix<T>::From(anchor_by_gt_overlap);
  auto anchor_to_gt_max_et =
      framework::EigenVector<T>::Flatten(anchor_to_gt_max);
  auto gt_to_anchor_max_et =
      framework::EigenVector<T>::Flatten(gt_to_anchor_max);
  auto anchor_to_gt_argmax_et =
      framework::EigenVector<int>::Flatten(anchor_to_gt_argmax);
  anchor_to_gt_max_et =
      anchor_by_gt_overlap_et.maximum(Eigen::DSizes<int, 1>(1));
  anchor_to_gt_argmax_et =
      anchor_by_gt_overlap_et.argmax(1).template cast<int>();
  gt_to_anchor_max_et =
      anchor_by_gt_overlap_et.maximum(Eigen::DSizes<int, 1>(0));

  // Follow the Faster RCNN's implementation
  ScoreAssign(anchor_by_gt_overlap_data, anchor_to_gt_max, gt_to_anchor_max,
              rpn_batch_size_per_im, rpn_fg_fraction, rpn_positive_overlap,
              rpn_negative_overlap, &fg_inds, &bg_inds, &tgt_lbl, engine,
              use_random);

  int fg_num = fg_inds.size();
  int bg_num = bg_inds.size();
  gt_inds.reserve(fg_num);
  for (int i = 0; i < fg_num; ++i) {
    gt_inds.emplace_back(argmax[fg_inds[i]]);
  }
287

288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306
  Tensor loc_index_t, score_index_t, tgt_lbl_t, gt_inds_t;
  int* loc_index_data = loc_index_t.mutable_data<int>({fg_num}, place);
  int* score_index_data =
      score_index_t.mutable_data<int>({fg_num + bg_num}, place);
  int* tgt_lbl_data = tgt_lbl_t.mutable_data<int>({fg_num + bg_num}, place);
  int* gt_inds_data = gt_inds_t.mutable_data<int>({fg_num}, place);
  std::copy(fg_inds.begin(), fg_inds.end(), loc_index_data);
  std::copy(fg_inds.begin(), fg_inds.end(), score_index_data);
  std::copy(bg_inds.begin(), bg_inds.end(), score_index_data + fg_num);
  std::copy(tgt_lbl.begin(), tgt_lbl.end(), tgt_lbl_data);
  std::copy(gt_inds.begin(), gt_inds.end(), gt_inds_data);
  std::vector<Tensor> loc_score_tgtlbl_gt;
  loc_score_tgtlbl_gt.emplace_back(loc_index_t);
  loc_score_tgtlbl_gt.emplace_back(score_index_t);
  loc_score_tgtlbl_gt.emplace_back(tgt_lbl_t);
  loc_score_tgtlbl_gt.emplace_back(gt_inds_t);

  return loc_score_tgtlbl_gt;
}
307

308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336
template <typename T>
class RpnTargetAssignKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& context) const override {
    auto* anchor = context.Input<Tensor>("Anchor");  // (H*W*A) * 4
    auto* gt_boxes = context.Input<LoDTensor>("GtBoxes");
    auto* is_crowd = context.Input<LoDTensor>("IsCrowd");
    auto* im_info = context.Input<LoDTensor>("ImInfo");

    auto* loc_index = context.Output<LoDTensor>("LocationIndex");
    auto* score_index = context.Output<LoDTensor>("ScoreIndex");
    auto* tgt_bbox = context.Output<LoDTensor>("TargetBBox");
    auto* tgt_lbl = context.Output<LoDTensor>("TargetLabel");

    PADDLE_ENFORCE_EQ(gt_boxes->lod().size(), 1UL,
                      "RpnTargetAssignOp gt_boxes needs 1 level of LoD");
    PADDLE_ENFORCE_EQ(is_crowd->lod().size(), 1UL,
                      "RpnTargetAssignOp is_crowd needs 1 level of LoD");
    int64_t anchor_num = static_cast<int64_t>(anchor->dims()[0]);
    int64_t batch_num = static_cast<int64_t>(gt_boxes->lod().back().size() - 1);

    int rpn_batch_size_per_im = context.Attr<int>("rpn_batch_size_per_im");
    float rpn_straddle_thresh = context.Attr<float>("rpn_straddle_thresh");
    float rpn_positive_overlap = context.Attr<float>("rpn_positive_overlap");
    float rpn_negative_overlap = context.Attr<float>("rpn_negative_overlap");
    float rpn_fg_fraction = context.Attr<float>("rpn_fg_fraction");
    bool use_random = context.Attr<bool>("use_random");

    int64_t max_num = batch_num * rpn_batch_size_per_im;
337 338
    auto place = context.GetPlace();

339 340 341 342
    loc_index->mutable_data<int>({max_num}, place);
    score_index->mutable_data<int>({max_num}, place);
    tgt_bbox->mutable_data<T>({max_num, 4}, place);
    tgt_lbl->mutable_data<int>({max_num, 1}, place);
343 344 345 346 347

    auto& dev_ctx = context.device_context<platform::CPUDeviceContext>();

    std::random_device rnd;
    std::minstd_rand engine;
348
    int seed = rnd();
349 350
    engine.seed(seed);

351 352 353 354 355 356 357 358
    framework::LoD lod_loc, loc_score;
    std::vector<size_t> lod0_loc(1, 0);
    std::vector<size_t> lod0_score(1, 0);

    int total_loc_num = 0;
    int total_score_num = 0;
    auto gt_boxes_lod = gt_boxes->lod().back();
    auto is_crowd_lod = is_crowd->lod().back();
359
    for (int i = 0; i < batch_num; ++i) {
360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407
      Tensor gt_boxes_slice =
          gt_boxes->Slice(gt_boxes_lod[i], gt_boxes_lod[i + 1]);
      Tensor is_crowd_slice =
          is_crowd->Slice(is_crowd_lod[i], is_crowd_lod[i + 1]);
      Tensor im_info_slice = im_info->Slice(i, i + 1);
      auto* im_info_data = im_info_slice.data<T>();
      auto im_height = im_info_data[0];
      auto im_width = im_info_data[1];
      auto im_scale = im_info_data[2];

      // Filter straddle anchor
      std::vector<Tensor> filter_output = FilterStraddleAnchor<T>(
          dev_ctx, anchor, rpn_straddle_thresh, im_height, im_width);
      Tensor inds_inside = filter_output[0];
      Tensor inside_anchor = filter_output[1];

      // Filter crowd gt
      Tensor ncrowd_gt_boxes =
          FilterCrowdGt<T>(dev_ctx, &gt_boxes_slice, &is_crowd_slice);
      auto ncrowd_gt_boxes_et =
          framework::EigenTensor<T, 2>::From(ncrowd_gt_boxes);
      ncrowd_gt_boxes_et = ncrowd_gt_boxes_et * im_scale;

      Tensor anchor_by_gt_overlap;
      anchor_by_gt_overlap.mutable_data<T>(
          {inside_anchor.dims()[0], ncrowd_gt_boxes.dims()[0]}, place);
      BboxOverlaps<T>(inside_anchor, ncrowd_gt_boxes, &anchor_by_gt_overlap);

      auto loc_score_tgtlbl_gt = SampleRpnFgBgGt<T>(
          dev_ctx, anchor_by_gt_overlap, rpn_batch_size_per_im,
          rpn_positive_overlap, rpn_negative_overlap, rpn_fg_fraction, engine,
          use_random);

      Tensor sampled_loc_index = loc_score_tgtlbl_gt[0];
      Tensor sampled_score_index = loc_score_tgtlbl_gt[1];
      Tensor sampled_tgtlbl = loc_score_tgtlbl_gt[2];
      Tensor sampled_gt_index = loc_score_tgtlbl_gt[3];

      int loc_num = sampled_loc_index.dims()[0];
      int score_num = sampled_score_index.dims()[0];
      // unmap to all anchor
      Tensor sampled_loc_index_unmap, sampled_score_index_unmap;
      sampled_loc_index_unmap.mutable_data<int>({loc_num}, place);
      sampled_score_index_unmap.mutable_data<int>({score_num}, place);
      Gather<int>(inds_inside.data<int>(), 1, sampled_loc_index.data<int>(),
                  loc_num, sampled_loc_index_unmap.data<int>());
      Gather<int>(inds_inside.data<int>(), 1, sampled_score_index.data<int>(),
                  score_num, sampled_score_index_unmap.data<int>());
408 409

      // get target bbox deltas
410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439
      Tensor sampled_anchor, sampled_gt, sampled_tgt_bbox;
      auto* sampled_anchor_data =
          sampled_anchor.mutable_data<T>({loc_num, 4}, place);
      auto* sampled_gt_data = sampled_gt.mutable_data<T>({loc_num, 4}, place);
      Gather<T>(anchor->data<T>(), 4, sampled_loc_index_unmap.data<int>(),
                loc_num, sampled_anchor_data);
      Gather<T>(ncrowd_gt_boxes.data<T>(), 4, sampled_gt_index.data<int>(),
                loc_num, sampled_gt_data);
      sampled_tgt_bbox.mutable_data<T>({loc_num, 4}, place);
      BoxToDelta<T>(loc_num, sampled_anchor, sampled_gt, nullptr, false,
                    &sampled_tgt_bbox);

      // Add anchor offset
      int anchor_offset = i * anchor_num;
      auto sampled_loc_index_unmap_et =
          framework::EigenTensor<int, 1>::From(sampled_loc_index_unmap);
      sampled_loc_index_unmap_et = sampled_loc_index_unmap_et + anchor_offset;
      auto sampled_score_index_unmap_et =
          framework::EigenTensor<int, 1>::From(sampled_score_index_unmap);
      sampled_score_index_unmap_et =
          sampled_score_index_unmap_et + anchor_offset;
      AppendRpns<int>(loc_index, total_loc_num, &sampled_loc_index_unmap);
      AppendRpns<int>(score_index, total_score_num, &sampled_score_index_unmap);
      AppendRpns<T>(tgt_bbox, total_loc_num * 4, &sampled_tgt_bbox);
      AppendRpns<int>(tgt_lbl, total_score_num, &sampled_tgtlbl);
      total_loc_num += loc_num;

      total_score_num += score_num;
      lod0_loc.emplace_back(total_loc_num);
      lod0_score.emplace_back(total_score_num);
Y
Yuan Gao 已提交
440 441
    }

442 443 444 445 446 447 448 449 450 451 452 453 454
    PADDLE_ENFORCE_LE(total_loc_num, max_num);
    PADDLE_ENFORCE_LE(total_score_num, max_num);

    lod_loc.emplace_back(lod0_loc);
    loc_score.emplace_back(lod0_score);
    loc_index->set_lod(lod_loc);
    score_index->set_lod(loc_score);
    tgt_bbox->set_lod(lod_loc);
    tgt_lbl->set_lod(loc_score);
    loc_index->Resize({total_loc_num});
    score_index->Resize({total_score_num});
    tgt_bbox->Resize({total_loc_num, 4});
    tgt_lbl->Resize({total_score_num, 1});
Y
Yuan Gao 已提交
455 456 457 458 459 460
  }
};

class RpnTargetAssignOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
  void Make() override {
461 462
    AddInput("Anchor",
             "(Tensor) input anchor is a 2-D Tensor with shape [H*W*A, 4].");
463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478
    AddInput("GtBoxes",
             "(LoDTensor) input groud-truth bbox with shape [K, 4].");
    AddInput("IsCrowd",
             "(LoDTensor) input which indicates groud-truth is crowd.");
    AddInput("ImInfo",
             "(LoDTensor) input image information with shape [N, 3]. "
             "N is the batch size, each image information includes height, "
             "width and scale.");
    AddAttr<int>("rpn_batch_size_per_im",
                 "Total number of RPN examples per image.")
        .SetDefault(256);
    AddAttr<float>(
        "rpn_straddle_thresh",
        "Remove RPN anchors that go outside the image by straddle_thresh "
        "pixels, "
        "Set to -1 or a large value, e.g. 100000, to disable pruning anchors.");
Y
Yuan Gao 已提交
479 480 481 482 483 484 485 486 487 488 489
    AddAttr<float>(
        "rpn_positive_overlap",
        "Minimum overlap required between an anchor and ground-truth "
        "box for the (anchor, gt box) pair to be a positive example.")
        .SetDefault(0.7);
    AddAttr<float>(
        "rpn_negative_overlap",
        "Maximum overlap allowed between an anchor and ground-truth "
        "box for the (anchor, gt box) pair to be a negative examples.")
        .SetDefault(0.3);
    AddAttr<float>(
490
        "rpn_fg_fraction",
Y
Yuan Gao 已提交
491 492 493
        "Target fraction of RoI minibatch that "
        "is labeled foreground (i.e. class > 0), 0-th class is background.")
        .SetDefault(0.25);
494 495 496 497 498
    AddAttr<bool>("use_random",
                  "A flag indicating whether to use a ReservoirSampling. "
                  "NOTE: DO NOT set this flag to false in training. "
                  "Setting this flag to false is only useful in unittest.")
        .SetDefault(true);
Y
Yuan Gao 已提交
499 500 501 502 503 504 505 506 507
    AddOutput(
        "LocationIndex",
        "(Tensor), The indexes of foreground anchors in all RPN anchors, the "
        "shape of the LocationIndex is [F], F depends on the value of input "
        "tensor and attributes.");
    AddOutput(
        "ScoreIndex",
        "(Tensor), The indexes of foreground and background anchors in all "
        "RPN anchors(The rest anchors are ignored). The shape of the "
508 509 510
        "ScoreIndex is [F + B], F and B are sampled foreground and backgroud "
        " number.");
    AddOutput("TargetBBox",
511
              "(Tensor), The target bbox deltas with shape "
512 513 514
              "[F, 4], F is the sampled foreground number.");
    AddOutput(
        "TargetLabel",
515
        "(Tensor<int>), The target labels of each anchor with shape "
516
        "[F + B, 1], F and B are sampled foreground and backgroud number.");
Y
Yuan Gao 已提交
517
    AddComment(R"DOC(
518
This operator can be, for a given set of ground truth bboxes and the
Y
Yuan Gao 已提交
519
anchors, to assign classification and regression targets to each prediction.
520
The ScoreIndex and LocationIndex will be generated according to the anchor-groundtruth IOU.
Y
Yuan Gao 已提交
521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550
The rest anchors would not contibute to the RPN training loss

ScoreIndex is composed of foreground anchor indexes(positive labels) and
background anchor indexes(negative labels). LocationIndex is exactly same
as the foreground anchor indexes since we can not assign regression target to 
the background anchors.

The classification targets(TargetLabel) is a binary class label (of being
an object or not). Following the paper of Faster-RCNN, the positive labels
are two kinds of anchors: (i) the anchor/anchors with the highest IoU
overlap with a ground-truth box, or (ii) an anchor that has an IoU overlap
higher than rpn_positive_overlap(0.7) with any ground-truth box. Note that
a single ground-truth box may assign positive labels to multiple anchors.
A non-positive anchor is when its IoU ratio is lower than rpn_negative_overlap
(0.3) for all ground-truth boxes. Anchors that are neither positive nor
negative do not contribute to the training objective.

)DOC");
  }
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
REGISTER_OPERATOR(rpn_target_assign, ops::RpnTargetAssignOp,
                  ops::RpnTargetAssignOpMaker,
                  paddle::framework::EmptyGradOpMaker);
REGISTER_OP_CPU_KERNEL(rpn_target_assign, ops::RpnTargetAssignKernel<float>,
                       ops::RpnTargetAssignKernel<double>);