sentiment_net.py 5.0 KB
Newer Older
Z
zhangjinchao01 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135
# Copyright (c) 2016 Baidu, Inc. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from os.path import join as join_path

from paddle.trainer_config_helpers import *


def sentiment_data(data_dir=None,
                   is_test=False,
                   is_predict=False,
                   train_list="train.list",
                   test_list="test.list",
                   dict_file="dict.txt"):
    """
    Predefined data provider for sentiment analysis.
    is_test: whether this config is used for test.
    is_predict: whether this config is used for prediction.
    train_list: text file name, containing a list of training set.
    test_list: text file name, containing a list of testing set.
    dict_file: text file name, containing dictionary.
    """
    dict_dim = len(open(join_path(data_dir, "dict.txt")).readlines())
    class_dim = len(open(join_path(data_dir, 'labels.list')).readlines())
    if is_predict:
        return dict_dim, class_dim

    if data_dir is not None:
        train_list = join_path(data_dir, train_list)
        test_list = join_path(data_dir, test_list)
        dict_file = join_path(data_dir, dict_file)

    train_list = train_list if not is_test else None
    word_dict = dict()
    with open(dict_file, 'r') as f:
        for i, line in enumerate(open(dict_file, 'r')):
            word_dict[line.split('\t')[0]] = i

    define_py_data_sources2(train_list, test_list,
                           module="dataprovider",
                           obj="process",
                           args={'dictionary': word_dict})

    return dict_dim, class_dim


def bidirectional_lstm_net(input_dim,
                           class_dim=2,
                           emb_dim=128,
                           lstm_dim=128,
                           is_predict=False):
    data = data_layer("word", input_dim)
    emb = embedding_layer(input=data, size=emb_dim)
    bi_lstm = bidirectional_lstm(input=emb, size=lstm_dim)
    dropout = dropout_layer(input=bi_lstm, dropout_rate=0.5)
    output = fc_layer(input=dropout, size=class_dim,
                      act_type=SoftmaxActivation())

    if not is_predict:
        lbl = data_layer("label", 1)
        outputs(classification_cost(input=output, label=lbl))
    else:
        outputs(output)


def stacked_lstm_net(input_dim,
                     class_dim=2,
                     emb_dim=128,
                     hid_dim=512,
                     stacked_num=3,
                     is_predict=False):
    """
    A Wrapper for sentiment classification task.
    This network uses bi-directional recurrent network,
    consisting three LSTM layers. This configure is referred to
    the paper as following url, but use fewer layrs.
        http://www.aclweb.org/anthology/P15-1109

    input_dim: here is word dictionary dimension.
    class_dim: number of categories.
    emb_dim: dimension of word embedding.
    hid_dim: dimension of hidden layer.
    stacked_num: number of stacked lstm-hidden layer.
    is_predict: is predicting or not.
                Some layers is not needed in network when predicting.
    """
    hid_lr = 1e-3
    assert stacked_num % 2 == 1

    layer_attr = ExtraLayerAttribute(drop_rate=0.5)
    fc_para_attr = ParameterAttribute(learning_rate=hid_lr)
    lstm_para_attr = ParameterAttribute(initial_std=0., learning_rate=1.)
    para_attr = [fc_para_attr, lstm_para_attr]
    bias_attr = ParameterAttribute(initial_std=0., l2_rate=0.)
    relu = ReluActivation()
    linear = LinearActivation()

    data = data_layer("word", input_dim)
    emb = embedding_layer(input=data, size=emb_dim)

    fc1 = fc_layer(input=emb, size=hid_dim, act=linear,
                   bias_attr=bias_attr)
    lstm1 = lstmemory(input=fc1, act=relu, bias_attr=bias_attr,
                      layer_attr=layer_attr)

    inputs = [fc1, lstm1]
    for i in range(2, stacked_num + 1):
        fc = fc_layer(input=inputs, size=hid_dim, act=linear,
                      param_attr=para_attr, bias_attr=bias_attr)
        lstm = lstmemory(input=fc, reverse=(i % 2) == 0, act=relu,
                         bias_attr=bias_attr, layer_attr=layer_attr)
        inputs = [fc, lstm]

    fc_last = pooling_layer(input=inputs[0], pooling_type=MaxPooling())
    lstm_last = pooling_layer(input=inputs[1], pooling_type=MaxPooling())
    output = fc_layer(input=[fc_last, lstm_last], size=class_dim,
                      act=SoftmaxActivation(),
                      bias_attr=bias_attr, param_attr=para_attr)

    if is_predict:
        outputs(output)
    else:
        outputs(
            classification_cost(input=output, label=data_layer('label', 1)))