# Copyright (c) 2016 Baidu, Inc. All Rights Reserved # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from os.path import join as join_path from paddle.trainer_config_helpers import * def sentiment_data(data_dir=None, is_test=False, is_predict=False, train_list="train.list", test_list="test.list", dict_file="dict.txt"): """ Predefined data provider for sentiment analysis. is_test: whether this config is used for test. is_predict: whether this config is used for prediction. train_list: text file name, containing a list of training set. test_list: text file name, containing a list of testing set. dict_file: text file name, containing dictionary. """ dict_dim = len(open(join_path(data_dir, "dict.txt")).readlines()) class_dim = len(open(join_path(data_dir, 'labels.list')).readlines()) if is_predict: return dict_dim, class_dim if data_dir is not None: train_list = join_path(data_dir, train_list) test_list = join_path(data_dir, test_list) dict_file = join_path(data_dir, dict_file) train_list = train_list if not is_test else None word_dict = dict() with open(dict_file, 'r') as f: for i, line in enumerate(open(dict_file, 'r')): word_dict[line.split('\t')[0]] = i define_py_data_sources2(train_list, test_list, module="dataprovider", obj="process", args={'dictionary': word_dict}) return dict_dim, class_dim def bidirectional_lstm_net(input_dim, class_dim=2, emb_dim=128, lstm_dim=128, is_predict=False): data = data_layer("word", input_dim) emb = embedding_layer(input=data, size=emb_dim) bi_lstm = bidirectional_lstm(input=emb, size=lstm_dim) dropout = dropout_layer(input=bi_lstm, dropout_rate=0.5) output = fc_layer(input=dropout, size=class_dim, act_type=SoftmaxActivation()) if not is_predict: lbl = data_layer("label", 1) outputs(classification_cost(input=output, label=lbl)) else: outputs(output) def stacked_lstm_net(input_dim, class_dim=2, emb_dim=128, hid_dim=512, stacked_num=3, is_predict=False): """ A Wrapper for sentiment classification task. This network uses bi-directional recurrent network, consisting three LSTM layers. This configure is referred to the paper as following url, but use fewer layrs. http://www.aclweb.org/anthology/P15-1109 input_dim: here is word dictionary dimension. class_dim: number of categories. emb_dim: dimension of word embedding. hid_dim: dimension of hidden layer. stacked_num: number of stacked lstm-hidden layer. is_predict: is predicting or not. Some layers is not needed in network when predicting. """ hid_lr = 1e-3 assert stacked_num % 2 == 1 layer_attr = ExtraLayerAttribute(drop_rate=0.5) fc_para_attr = ParameterAttribute(learning_rate=hid_lr) lstm_para_attr = ParameterAttribute(initial_std=0., learning_rate=1.) para_attr = [fc_para_attr, lstm_para_attr] bias_attr = ParameterAttribute(initial_std=0., l2_rate=0.) relu = ReluActivation() linear = LinearActivation() data = data_layer("word", input_dim) emb = embedding_layer(input=data, size=emb_dim) fc1 = fc_layer(input=emb, size=hid_dim, act=linear, bias_attr=bias_attr) lstm1 = lstmemory(input=fc1, act=relu, bias_attr=bias_attr, layer_attr=layer_attr) inputs = [fc1, lstm1] for i in range(2, stacked_num + 1): fc = fc_layer(input=inputs, size=hid_dim, act=linear, param_attr=para_attr, bias_attr=bias_attr) lstm = lstmemory(input=fc, reverse=(i % 2) == 0, act=relu, bias_attr=bias_attr, layer_attr=layer_attr) inputs = [fc, lstm] fc_last = pooling_layer(input=inputs[0], pooling_type=MaxPooling()) lstm_last = pooling_layer(input=inputs[1], pooling_type=MaxPooling()) output = fc_layer(input=[fc_last, lstm_last], size=class_dim, act=SoftmaxActivation(), bias_attr=bias_attr, param_attr=para_attr) if is_predict: outputs(output) else: outputs( classification_cost(input=output, label=data_layer('label', 1)))