pybind.cc 33.8 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

7
http://www.apache.org/licenses/LICENSE-2.0
8 9 10 11 12 13

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
L
lgone2000 已提交
14
#include <Python.h>
C
chengduoZH 已提交
15 16
#include <algorithm>
#include <map>
S
sneaxiy 已提交
17
#include <memory>
C
chengduoZH 已提交
18 19 20 21 22
#include <mutex>  // NOLINT // for call_once
#include <string>
#include <unordered_map>
#include <utility>
#include <vector>
23

Y
Yi Wang 已提交
24 25 26 27 28 29
#include "paddle/fluid/framework/executor.h"
#include "paddle/fluid/framework/feed_fetch_method.h"
#include "paddle/fluid/framework/framework.pb.h"
#include "paddle/fluid/framework/lod_rank_table.h"
#include "paddle/fluid/framework/lod_tensor.h"
#include "paddle/fluid/framework/lod_tensor_array.h"
30
#include "paddle/fluid/framework/op_registry.h"
Y
Yu Yang 已提交
31
#include "paddle/fluid/framework/parallel_executor.h"
Y
Yi Wang 已提交
32
#include "paddle/fluid/framework/prune.h"
Y
Refine  
Yu Yang 已提交
33
#include "paddle/fluid/framework/reader.h"
Y
Yi Wang 已提交
34
#include "paddle/fluid/framework/selected_rows.h"
X
Xin Pan 已提交
35
#include "paddle/fluid/framework/version.h"
D
dzhwinter 已提交
36
#include "paddle/fluid/operators/activation_op.h"
S
sneaxiy 已提交
37
#include "paddle/fluid/operators/reader/lod_tensor_blocking_queue.h"
Y
Yi Wang 已提交
38
#include "paddle/fluid/platform/enforce.h"
39
#include "paddle/fluid/platform/init.h"
Y
Yi Wang 已提交
40 41 42 43
#include "paddle/fluid/platform/place.h"
#include "paddle/fluid/platform/profiler.h"
#include "paddle/fluid/pybind/const_value.h"
#include "paddle/fluid/pybind/exception.h"
44 45
#include "paddle/fluid/pybind/protobuf.h"
#include "paddle/fluid/pybind/pybind.h"  // NOLINT
Y
Yu Yang 已提交
46
#include "paddle/fluid/pybind/recordio.h"
Y
Yi Wang 已提交
47
#include "paddle/fluid/pybind/tensor_py.h"
Y
Yu Yang 已提交
48

49
#include "paddle/fluid/string/to_string.h"
50

D
Dong Zhihong 已提交
51
#ifdef PADDLE_WITH_CUDA
Y
Yi Wang 已提交
52 53 54
#include "paddle/fluid/operators/nccl/nccl_gpu_common.h"
#include "paddle/fluid/platform/cuda_profiler.h"
#include "paddle/fluid/platform/gpu_info.h"
D
Dong Zhihong 已提交
55 56
#endif

M
minqiyang 已提交
57 58
#include "pybind11/stl.h"

Q
Qiao Longfei 已提交
59 60 61
// disable auto conversion to list in Python
PYBIND11_MAKE_OPAQUE(paddle::framework::LoDTensorArray);

62
namespace paddle {
63
namespace pybind {
64
bool IsCompiledWithCUDA() {
65
#ifndef PADDLE_WITH_CUDA
Q
qijun 已提交
66 67 68 69 70 71
  return false;
#else
  return true;
#endif
}

Y
update  
Yancey1989 已提交
72
bool IsCompiledWithDIST() {
Y
Yancey1989 已提交
73
#ifdef PADDLE_WITH_DISTRIBUTE
Y
update  
Yancey1989 已提交
74 75 76 77 78 79
  return true;
#else
  return false;
#endif
}

80 81
PYBIND11_PLUGIN(core) {
  py::module m("core", "C++ core of PaddlePaddle");
82

83 84 85 86
  // using framework in this function. Since it is inside a function, it will
  // not cause namespace pollution.
  using namespace paddle::framework;  // NOLINT

87
  BindException(&m);
Y
Yu Yang 已提交
88

89 90 91
  py::class_<Tensor>(m, "Tensor", py::buffer_protocol())
      .def_buffer(
          [](Tensor &self) -> py::buffer_info { return CastToPyBuffer(self); })
Y
yuyang18 已提交
92
      .def("_get_dims",
93
           [](const Tensor &self) { return vectorize(self.dims()); })
Y
yuyang18 已提交
94
      .def("_set_dims",
Q
qijun 已提交
95
           [](Tensor &self, const std::vector<int64_t> &dim) {
Y
Yu Yang 已提交
96
             self.Resize(make_ddim(dim));
Y
Yu Yang 已提交
97
           })
Y
yuyang18 已提交
98
      .def("_set_layout",
D
dzhwinter 已提交
99 100 101
           [](Tensor &self, const std::string &layout) {
             self.set_layout(StringToDataLayout(layout));
           })
Y
yuyang18 已提交
102
      .def("_alloc_float",
D
dzhwinter 已提交
103
           [](Tensor &self, paddle::platform::CUDAPlace &place) {
Q
qijun 已提交
104
             self.mutable_data<float>(place);
Y
Yu Yang 已提交
105
           })
Y
yuyang18 已提交
106
      .def("_alloc_float",
Y
Yu Yang 已提交
107
           [](Tensor &self, paddle::platform::CPUPlace &place) {
Q
qijun 已提交
108
             self.mutable_data<float>(place);
Y
Yu Yang 已提交
109
           })
Y
yuyang18 已提交
110
      .def("_alloc_int",
Y
Yu Yang 已提交
111
           [](Tensor &self, paddle::platform::CPUPlace &place) {
Q
qijun 已提交
112
             self.mutable_data<int>(place);
Y
Yu Yang 已提交
113
           })
Y
yuyang18 已提交
114
      .def("_alloc_int",
D
dzhwinter 已提交
115
           [](Tensor &self, paddle::platform::CUDAPlace &place) {
Q
qijun 已提交
116
             self.mutable_data<int>(place);
Q
qijun 已提交
117
           })
Y
yuyang18 已提交
118
      .def("_alloc_int",
C
chengduoZH 已提交
119 120 121
           [](Tensor &self, paddle::platform::CUDAPinnedPlace &place) {
             self.mutable_data<int>(place);
           })
Y
yuyang18 已提交
122
      .def("_alloc_float",
C
chengduoZH 已提交
123 124 125
           [](Tensor &self, paddle::platform::CUDAPinnedPlace &place) {
             self.mutable_data<float>(place);
           })
Y
Yu Yang 已提交
126 127
      .def("set", PyCPUTensorSetFromArray<float>)
      .def("set", PyCPUTensorSetFromArray<int>)
128
      .def("set", PyCPUTensorSetFromArray<double>)
129
      .def("set", PyCPUTensorSetFromArray<int64_t>)
Y
Yu Yang 已提交
130
      .def("set", PyCPUTensorSetFromArray<bool>)
131
      .def("set", PyCPUTensorSetFromArray<uint16_t>)
F
fengjiayi 已提交
132
      .def("set", PyCPUTensorSetFromArray<uint8_t>)
Q
qingqing01 已提交
133
      .def("set", PyCPUTensorSetFromArray<int8_t>)
134
#ifdef PADDLE_WITH_CUDA
Y
Yu Yang 已提交
135 136
      .def("set", PyCUDATensorSetFromArray<float>)
      .def("set", PyCUDATensorSetFromArray<int>)
137
      .def("set", PyCUDATensorSetFromArray<double>)
138
      .def("set", PyCUDATensorSetFromArray<int64_t>)
Y
Yu Yang 已提交
139
      .def("set", PyCUDATensorSetFromArray<bool>)
140
      .def("set", PyCUDATensorSetFromArray<uint16_t>)
F
fengjiayi 已提交
141
      .def("set", PyCUDATensorSetFromArray<uint8_t>)
Q
qingqing01 已提交
142
      .def("set", PyCUDATensorSetFromArray<int8_t>)
C
chengduoZH 已提交
143 144 145 146 147 148
      .def("set", PyCUDAPinnedTensorSetFromArray<float>)
      .def("set", PyCUDAPinnedTensorSetFromArray<int>)
      .def("set", PyCUDAPinnedTensorSetFromArray<double>)
      .def("set", PyCUDAPinnedTensorSetFromArray<int64_t>)
      .def("set", PyCUDAPinnedTensorSetFromArray<bool>)
      .def("set", PyCUDAPinnedTensorSetFromArray<uint16_t>)
F
fengjiayi 已提交
149
      .def("set", PyCUDAPinnedTensorSetFromArray<uint8_t>)
Q
qingqing01 已提交
150
      .def("set", PyCUDAPinnedTensorSetFromArray<int8_t>)
Q
qijun 已提交
151
#endif
152
      .def("shape", [](Tensor &self) { return vectorize(self.dims()); })
Y
yuyang18 已提交
153 154 155 156 157
      .def("_set_float_element", TensorSetElement<float>)
      .def("_get_float_element", TensorGetElement<float>)
      .def("_set_double_element", TensorSetElement<double>)
      .def("_get_double_element", TensorGetElement<double>)
      .def("_dtype", [](Tensor &self) { return ToDataType(self.type()); });
Y
Yu Yang 已提交
158

159
  py::class_<LoDTensor, Tensor>(m, "LoDTensor")
160 161
      .def_buffer(
          [](Tensor &self) -> py::buffer_info { return CastToPyBuffer(self); })
162 163 164 165 166 167 168 169 170 171 172 173 174 175
      .def("__init__",
           [](LoDTensor &instance, const std::vector<std::vector<size_t>>
                                       &recursive_sequence_lengths) {
             LoD new_lod;
             new_lod.reserve(recursive_sequence_lengths.size());
             std::copy(recursive_sequence_lengths.begin(),
                       recursive_sequence_lengths.end(),
                       std::back_inserter(new_lod));
             LoD new_offset_lod = ConvertToOffsetBasedLoD(new_lod);
             PADDLE_ENFORCE(
                 CheckLoD(new_offset_lod, -1),
                 "the provided recursive_sequence_lengths info is invalid");
             new (&instance) LoDTensor(new_offset_lod);
           })
Y
Yu Yang 已提交
176
      .def("__init__", [](LoDTensor &instance) { new (&instance) LoDTensor(); })
G
gongweibao 已提交
177 178 179 180 181
      // We implement offset based LOD in C++ while we use length based with
      // Python API. So we changed set_lod to set_recursive_sequence_lengths to
      // avoid misuse.
      // The discussion is here:
      // https://github.com/PaddlePaddle/Paddle/issues/10855
D
dangqingqing 已提交
182
      .def("set_lod",
183
           [](LoDTensor &self, const std::vector<std::vector<size_t>> &lod) {
184
             // the input lod is offset-based level-of-detail info
Y
Yu Yang 已提交
185
             LoD new_lod;
186 187
             new_lod.reserve(lod.size());
             std::copy(lod.begin(), lod.end(), std::back_inserter(new_lod));
188 189
             PADDLE_ENFORCE(CheckLoD(new_lod, vectorize(self.dims()).front()),
                            "the provided lod info is invalid");
190
             self.set_lod(new_lod);
D
dangqingqing 已提交
191
           })
192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216
      .def("set_recursive_sequence_lengths",
           [](LoDTensor &self, const std::vector<std::vector<size_t>>
                                   &recursive_sequence_lengths) {
             // the input recursive_sequence_lengths is length-based
             // level-of-detail info
             LoD new_lod;
             new_lod.reserve(recursive_sequence_lengths.size());
             std::copy(recursive_sequence_lengths.begin(),
                       recursive_sequence_lengths.end(),
                       std::back_inserter(new_lod));
             LoD new_offset_lod = ConvertToOffsetBasedLoD(new_lod);
             PADDLE_ENFORCE(
                 CheckLoD(new_offset_lod, vectorize(self.dims()).front()),
                 "the provided recursive_sequence_lengths info is invalid");
             self.set_lod(new_offset_lod);
           })
      .def("lod",
           [](LoDTensor &self) -> std::vector<std::vector<size_t>> {
             // output the offset-based lod info
             LoD lod = self.lod();
             std::vector<std::vector<size_t>> new_lod;
             new_lod.reserve(lod.size());
             std::copy(lod.begin(), lod.end(), std::back_inserter(new_lod));
             return new_lod;
           })
G
gongweibao 已提交
217
      // Set above comments of set_lod.
218 219 220 221 222 223 224 225 226 227 228 229 230
      .def("recursive_sequence_lengths",
           [](LoDTensor &self) -> std::vector<std::vector<size_t>> {
             // output the length-based lod info
             LoD lod = ConvertToLengthBasedLoD(self.lod());
             std::vector<std::vector<size_t>> new_lod;
             new_lod.reserve(lod.size());
             std::copy(lod.begin(), lod.end(), std::back_inserter(new_lod));
             return new_lod;
           })
      .def("has_valid_recursive_sequence_lengths", [](LoDTensor &self) -> bool {
        // Check that the lod info is valid and match the outermost
        // dimension of the LoDTensor data
        return CheckLoD(self.lod(), vectorize(self.dims()).front());
D
dangqingqing 已提交
231 232
      });

Q
qijun 已提交
233 234 235 236 237 238 239 240 241 242 243 244 245
  py::class_<SelectedRows>(m, "SelectedRows")
      .def("__init__",
           [](SelectedRows &instance) { new (&instance) SelectedRows(); })
      .def("__init__",
           [](SelectedRows &instance, const std::vector<int64_t> rows,
              const int64_t &height) {
             new (&instance) SelectedRows(rows, height);
           })
      .def("get_tensor",
           [](SelectedRows &self) { return self.mutable_value(); },
           py::return_value_policy::reference)
      .def("set_height", &SelectedRows::set_height)
      .def("height", &SelectedRows::height)
Q
qijun 已提交
246 247 248 249 250 251 252 253 254
      .def("set_rows",
           [](SelectedRows &self, std::vector<int64_t> rows) {
#ifndef PADDLE_WITH_CUDA
             self.set_rows(rows);
#else
        Vector<int64_t> new_rows(rows);
        self.set_rows(new_rows);
#endif
           })
255
      .def("sync_index", [](SelectedRows &instance) { instance.SyncIndex(); })
256
      .def("rows", [](SelectedRows &self) {
257 258 259 260 261
        auto rows = self.rows();
        std::vector<int64_t> new_rows;
        new_rows.reserve(rows.size());
        std::copy(rows.begin(), rows.end(), std::back_inserter(new_rows));
        return new_rows;
262
      });
Q
qijun 已提交
263

264
  py::class_<Variable>(m, "Variable", R"DOC(Variable Class.
265 266 267

All parameter, weight, gradient are variables in Paddle.
)DOC")
268
      .def("is_int", [](const Variable &var) { return var.IsType<int>(); })
269
      .def("set_int",
270 271
           [](Variable &var, int val) -> void { *var.GetMutable<int>() = val; })
      .def("get_int", [](const Variable &var) -> int { return var.Get<int>(); })
272 273 274 275 276 277 278
      .def("is_float", [](const Variable &var) { return var.IsType<float>(); })
      .def("set_float",
           [](Variable &var, float val) -> void {
             *var.GetMutable<float>() = val;
           })
      .def("get_float",
           [](const Variable &var) -> float { return var.Get<float>(); })
Y
Yu Yang 已提交
279
      .def("get_tensor",
280 281
           [](Variable &self) -> LoDTensor * {
             return self.GetMutable<LoDTensor>();
D
dangqingqing 已提交
282 283
           },
           py::return_value_policy::reference)
Y
Yu Yang 已提交
284 285 286
      .def("get_lod_rank_table",
           [](Variable &self) { return self.GetMutable<LoDRankTable>(); },
           py::return_value_policy::reference)
Q
qijun 已提交
287 288 289 290 291
      .def("get_selected_rows",
           [](Variable &self) -> SelectedRows * {
             return self.GetMutable<SelectedRows>();
           },
           py::return_value_policy::reference)
Y
Yu Yang 已提交
292 293 294
      .def("get_lod_tensor_array",
           [](Variable &self) { return self.GetMutable<LoDTensorArray>(); },
           py::return_value_policy::reference)
D
Dong Zhihong 已提交
295 296 297 298 299 300 301
#ifdef PADDLE_WITH_CUDA
      .def("get_communicator",
           [](Variable &self) -> platform::Communicator * {
             return self.GetMutable<platform::Communicator>();
           },
           py::return_value_policy::reference)
#endif
Y
Refine  
Yu Yang 已提交
302 303 304 305 306
      .def("get_reader",
           [](Variable &self) -> framework::ReaderHolder * {
             PADDLE_ENFORCE(self.IsType<framework::ReaderHolder>());
             return self.GetMutable<framework::ReaderHolder>();
           },
Y
Yu Yang 已提交
307
           py::return_value_policy::reference);
308

Y
Refine  
Yu Yang 已提交
309
  py::class_<framework::ReaderHolder>(m, "Reader", "")
310
      .def("reset", &framework::ReaderHolder::ResetAll);
Y
Refine  
Yu Yang 已提交
311

S
sneaxiy 已提交
312 313 314 315
  using LoDTensorBlockingQueue =
      ::paddle::operators::reader::LoDTensorBlockingQueue;
  using LoDTensorBlockingQueueHolder =
      ::paddle::operators::reader::LoDTensorBlockingQueueHolder;
S
sneaxiy 已提交
316 317
  py::class_<LoDTensorBlockingQueue, std::shared_ptr<LoDTensorBlockingQueue>>(
      m, "LoDTensorBlockingQueue", "")
S
sneaxiy 已提交
318
      .def("push",
S
sneaxiy 已提交
319
           [](LoDTensorBlockingQueue &self,
S
sneaxiy 已提交
320
              const std::vector<framework::LoDTensor> &lod_tensor_vec) {
S
sneaxiy 已提交
321
             pybind11::gil_scoped_release release;
S
sneaxiy 已提交
322
             return self.Push(lod_tensor_vec);
S
sneaxiy 已提交
323
           })
S
sneaxiy 已提交
324 325 326 327
      .def("size", &LoDTensorBlockingQueue::Size)
      .def("capacity", &LoDTensorBlockingQueue::Cap)
      .def("close", &LoDTensorBlockingQueue::Close)
      .def("is_closed", &LoDTensorBlockingQueue::IsClosed);
S
sneaxiy 已提交
328

S
sneaxiy 已提交
329
  m.def("init_lod_tensor_blocking_queue",
S
sneaxiy 已提交
330
        [](Variable &var, size_t capacity,
S
sneaxiy 已提交
331
           const std::vector<std::vector<int64_t>> &shapes)
S
sneaxiy 已提交
332
            -> std::shared_ptr<LoDTensorBlockingQueue> {
S
sneaxiy 已提交
333 334 335 336 337 338 339
              std::vector<DDim> dims(shapes.size());
              std::transform(shapes.begin(), shapes.end(), dims.begin(),
                             [](const std::vector<int64_t> &shape) {
                               return make_ddim(shape);
                             });
              auto *holder = var.GetMutable<LoDTensorBlockingQueueHolder>();
              holder->InitOnce(capacity, dims);
S
sneaxiy 已提交
340
              return holder->GetQueue();
S
sneaxiy 已提交
341
            },
S
sneaxiy 已提交
342
        py::return_value_policy::copy);
S
sneaxiy 已提交
343

344
  py::class_<Scope>(m, "Scope", "")
D
dongzhihong 已提交
345
      .def("var",
346
           [](Scope &self, const std::string &name) -> Variable * {
D
dongzhihong 已提交
347
             return self.Var(name);
Y
Yu Yang 已提交
348
           },
349
           py::return_value_policy::reference)
350
      .def("find_var", &Scope::FindVar, py::return_value_policy::reference)
Y
Yu Yang 已提交
351
      .def(py::init<>())
352
      .def("new_scope", [](Scope &self) -> Scope * { return &self.NewScope(); },
353
           py::return_value_policy::reference)
Y
Yu Yang 已提交
354
      .def("drop_kids", &Scope::DropKids);
355

Y
Yu Yang 已提交
356 357
  //! @note: Be careful! PyBind will return std::string as an unicode, not
  //! Python str. If you want a str object, you should cast them in Python.
Y
Yu Yang 已提交
358 359
  m.def("get_all_op_protos", []() -> std::vector<py::bytes> {
    std::vector<py::bytes> ret_values;
360 361 362 363 364 365 366 367 368 369
    for (auto &iter : OpInfoMap::Instance().map()) {
      auto &info = iter.second;
      if (info.HasOpProtoAndChecker()) {
        std::string str;
        PADDLE_ENFORCE(
            info.Proto().SerializeToString(&str),
            "Serialize OpProto Error. This could be a bug of Paddle.");
        ret_values.emplace_back(str);
      }
    }
Y
Yu Yang 已提交
370 371
    return ret_values;
  });
372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387
  m.def(
      "get_grad_op_desc", [](const OpDesc &op_desc,
                             const std::unordered_set<std::string> &no_grad_set,
                             const std::vector<BlockDesc *> &grad_sub_block) {
        std::unordered_map<std::string, std::string> grad_to_var;
        std::vector<std::unique_ptr<OpDesc>> grad_op_descs =
            framework::OpInfoMap::Instance()
                .Get(op_desc.Type())
                .GradOpMaker()(op_desc, no_grad_set, &grad_to_var,
                               grad_sub_block);
        std::vector<OpDesc *> grad_op_desc_ptrs(grad_op_descs.size());
        std::transform(grad_op_descs.begin(), grad_op_descs.end(),
                       grad_op_desc_ptrs.begin(),
                       [](std::unique_ptr<OpDesc> &p) { return p.release(); });
        return std::make_pair(grad_op_desc_ptrs, grad_to_var);
      });
Y
Yu Yang 已提交
388
  m.def("prune", [](const ProgramDesc &origin,
389
                    const std::vector<std::array<size_t, 2>> &targets) {
Y
Yu Yang 已提交
390
    ProgramDesc prog_with_targets(origin);
391
    for (const auto &t : targets) {
392
      prog_with_targets.MutableBlock(t[0])->Op(t[1])->SetIsTarget(true);
393
    }
394
    proto::ProgramDesc pruned_desc;
395
    Prune(*prog_with_targets.Proto(), &pruned_desc);
Y
Yu Yang 已提交
396
    return new ProgramDesc(pruned_desc);
397
  });
398 399 400 401
  m.def("empty_var_name",
        []() { return std::string(framework::kEmptyVarName); });
  m.def("grad_var_suffix",
        []() { return std::string(framework::kGradVarSuffix); });
402 403 404
  m.def_submodule(
       "var_names",
       "The module will return special predefined variable name in Paddle")
Y
Yi Wang 已提交
405 406
      .def("empty", []() { return kEmptyVarName; })
      .def("temp", []() { return kTempVarName; });
Q
qijun 已提交
407
  // clang-format off
Y
Yu Yang 已提交
408
  py::class_<paddle::platform::DeviceContext>(m, "DeviceContext")
Q
qijun 已提交
409 410
      .def_static("create",
                  [](paddle::platform::CPUPlace& place)
Q
qijun 已提交
411
                      -> paddle::platform::DeviceContext* {
Q
qijun 已提交
412 413 414
                    return new paddle::platform::CPUDeviceContext();
                  })
      .def_static("create",
D
dzhwinter 已提交
415
                  [](paddle::platform::CUDAPlace& place)
Q
qijun 已提交
416
                      -> paddle::platform::DeviceContext* {
417
#ifndef PADDLE_WITH_CUDA
D
dzhwinter 已提交
418
                    PADDLE_THROW("CUDAPlace is not supported in CPU device.");
Q
qijun 已提交
419
#else
Q
qijun 已提交
420
                    return new paddle::platform::CUDADeviceContext(place);
Q
qijun 已提交
421
#endif
C
chengduoZH 已提交
422 423 424 425 426 427 428 429 430 431 432
                  })
          .def_static("create",
                [](paddle::platform::CUDAPinnedPlace& place)
                        -> paddle::platform::DeviceContext* {
#ifndef PADDLE_WITH_CUDA
                  PADDLE_THROW(
                        "CUDAPinnedPlace is not supported in CPU device.");
#else
                  return new paddle::platform::CUDAPinnedDeviceContext(place);
#endif
                });;
D
Dong Zhihong 已提交
433 434 435 436
// clang-format on
#ifdef PADDLE_WITH_CUDA
  py::class_<platform::Communicator>(m, "Communicator").def(py::init<>());
#endif
D
dzhwinter 已提交
437
  py::class_<platform::CUDAPlace>(m, "CUDAPlace")
438
      .def(py::init<int>())
D
dzhwinter 已提交
439
      .def("__str__", string::to_string<const platform::CUDAPlace &>);
Q
qijun 已提交
440

441 442 443
  py::class_<paddle::platform::CPUPlace>(m, "CPUPlace")
      .def(py::init<>())
      .def("__str__", string::to_string<const platform::CPUPlace &>);
Y
Yu Yang 已提交
444

C
chengduoZH 已提交
445 446 447 448
  py::class_<paddle::platform::CUDAPinnedPlace>(m, "CUDAPinnedPlace")
      .def(py::init<>())
      .def("__str__", string::to_string<const platform::CUDAPinnedPlace &>);

Y
Yu Yang 已提交
449 450 451 452 453 454 455
  py::class_<platform::Place>(m, "Place")
      .def(py::init<>())
      .def("set_place",
           [](platform::Place &self, const platform::CPUPlace &cpu_place) {
             self = cpu_place;
           })
      .def("set_place",
D
dzhwinter 已提交
456
           [](platform::Place &self, const platform::CUDAPlace &gpu_place) {
Y
Yu Yang 已提交
457
             self = gpu_place;
C
chengduoZH 已提交
458 459
           })
      .def("set_place", [](platform::Place &self,
C
chengduoZH 已提交
460 461
                           const platform::CUDAPinnedPlace &cuda_pinned_place) {
        self = cuda_pinned_place;
C
chengduoZH 已提交
462
      });
Y
Yu Yang 已提交
463

Y
Yu Yang 已提交
464 465 466
  py::class_<OperatorBase>(m, "Operator")
      .def_static("create",
                  [](py::bytes protobin) {
467
                    proto::OpDesc desc;
Y
Yu Yang 已提交
468 469 470 471 472
                    PADDLE_ENFORCE(desc.ParsePartialFromString(protobin),
                                   "Cannot parse user input to OpDesc");
                    PADDLE_ENFORCE(desc.IsInitialized(),
                                   "User OpDesc is not initialized, reason %s",
                                   desc.InitializationErrorString());
473
                    return OpRegistry::CreateOp(desc);
Y
Yu Yang 已提交
474
                  })
475
      .def("run",
476
           [](OperatorBase &self, const Scope &scope,
D
dzhwinter 已提交
477 478 479
              const platform::CPUPlace &place) { self.Run(scope, place); })
      .def("run",
           [](OperatorBase &self, const Scope &scope,
D
dzhwinter 已提交
480
              const platform::CUDAPlace &place) { self.Run(scope, place); })
C
chengduoZH 已提交
481 482 483 484 485
      .def("run",
           [](OperatorBase &self, const Scope &scope,
              const platform::CUDAPinnedPlace &place) {
             self.Run(scope, place);
           })
Y
Yu Yang 已提交
486 487 488 489 490 491 492
      .def("type",
           [](const OperatorBase &op) -> std::string { return op.Type(); })
      .def("outputs",
           [](const OperatorBase &op)
               -> std::map<std::string, std::vector<std::string>> {
                 return op.Outputs();
               })
Q
qijun 已提交
493 494
      .def("output_vars",
           [](const OperatorBase &op) { return op.OutputVars(true); })
Y
Yu Yang 已提交
495
      .def("inputs", [](const OperatorBase &op) { return op.Inputs(); })
Q
qijun 已提交
496
      .def("input_vars", [](const OperatorBase &op) { return op.InputVars(); })
Y
Yu Yang 已提交
497 498 499 500
      .def("__str__", &OperatorBase::DebugString)
      .def("no_intermediate_outputs",
           [](const OperatorBase &op) { return op.OutputVars(false); })
      .def("support_gpu", &OperatorBase::SupportGPU);
Y
Yu Yang 已提交
501

F
fengjiayi 已提交
502
  py::class_<framework::Executor>(m, "Executor")
D
dzhwinter 已提交
503
      .def(py::init<const platform::Place &>())
Y
Yancey1989 已提交
504
      .def("close", &Executor::Close)
S
sneaxiy 已提交
505 506 507 508 509
      .def("run", [](Executor &self, const ProgramDesc &prog, Scope *scope,
                     int block_id, bool create_local_scope, bool create_vars) {
        pybind11::gil_scoped_release release;
        self.Run(prog, scope, block_id, create_local_scope, create_vars);
      });
S
sneaxiy 已提交
510

D
dzhwinter 已提交
511
  m.def("init_gflags", framework::InitGflags);
Y
Yang Yu 已提交
512
  m.def("init_glog", framework::InitGLOG);
X
Xin Pan 已提交
513 514
  m.def("init_devices",
        [](bool init_p2p) { framework::InitDevices(init_p2p); });
515

516
  m.def("is_compiled_with_cuda", IsCompiledWithCUDA);
Y
update  
Yancey1989 已提交
517
  m.def("is_compiled_with_dist", IsCompiledWithDIST);
518 519 520 521 522 523
#ifdef PADDLE_WITH_CUDA
  m.def("is_float16_supported", [](const platform::CUDAPlace &place) -> bool {
    // Only GPUs with Compute Capability >= 53 support float16
    return platform::GetCUDAComputeCapability(place.device) >= 53;
  });
#endif
524

525
  m.def("set_feed_variable", framework::SetFeedVariable);
Q
qijun 已提交
526
  m.def("get_fetch_variable", framework::GetFetchVariable);
Q
qijun 已提交
527

X
Xin Pan 已提交
528 529
  m.def("_is_program_version_supported", IsProgramVersionSupported);

530 531 532 533 534
  BindProgramDesc(&m);
  BindBlockDesc(&m);
  BindVarDsec(&m);
  BindOpDesc(&m);
  BindConstValue(&m);
Y
Yu Yang 已提交
535

Y
Yu Yang 已提交
536 537 538 539 540 541 542 543 544
  py::class_<framework::LoDRankTable>(m, "LodRankTable")
      .def("items", [](framework::LoDRankTable &table) {
        std::vector<std::pair<size_t, size_t>> res;
        for (auto &item : table.items()) {
          res.push_back({item.index, item.length});
        }
        return res;
      });

Y
Yu Yang 已提交
545
  py::class_<LoDTensorArray>(m, "LoDTensorArray")
S
sneaxiy 已提交
546 547
      .def("__init__",
           [](LoDTensorArray &instance) { new (&instance) LoDTensorArray(); })
Y
Yu Yang 已提交
548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563
      .def("__getitem__",
           [](LoDTensorArray &self, size_t i) { return &self.at(i); },
           py::return_value_policy::reference)
      .def("__len__", [](LoDTensorArray &self) { return self.size(); })
      .def("__setitem__",
           [](LoDTensorArray &self, size_t i, const LoDTensor &t) {
             PADDLE_ENFORCE_LT(i, self.size());
             self[i].ShareDataWith(t);
             self[i].set_lod(t.lod());
           })
      .def("append", [](LoDTensorArray &self, const LoDTensor &t) {
        self.emplace_back();
        self.back().ShareDataWith(t);
        self.back().set_lod(t.lod());
      });

D
dzhwinter 已提交
564 565 566
  m.def("IsInplace",
        [](std::string op) -> bool { return operators::IsInplace(op); });

Y
Yu Yang 已提交
567
  m.def("op_support_gpu", OpSupportGPU);
D
Dong Zhihong 已提交
568
#ifdef PADDLE_WITH_CUDA
D
Dong Zhihong 已提交
569
  m.def("get_cuda_device_count", platform::GetCUDADeviceCount);
D
dangqingqing 已提交
570 571 572 573

  m.def("nvprof_init", platform::CudaProfilerInit);
  m.def("nvprof_start", platform::CudaProfilerStart);
  m.def("nvprof_stop", platform::CudaProfilerStop);
D
Dong Zhihong 已提交
574
#endif
Y
Yu Yang 已提交
575

576 577 578 579
  py::enum_<platform::ProfilerState>(m, "ProfilerState", py::arithmetic())
      .value("kDisabled", platform::ProfilerState::kDisabled)
      .value("kCPU", platform::ProfilerState::kCPU)
      .value("kCUDA", platform::ProfilerState::kCUDA)
580
      .value("kAll", platform::ProfilerState::kAll)
581 582 583 584 585 586 587 588 589 590 591 592 593
      .export_values();

  py::enum_<platform::EventSortingKey>(m, "EventSortingKey", py::arithmetic())
      .value("kDefault", platform::EventSortingKey::kDefault)
      .value("kCalls", platform::EventSortingKey::kCalls)
      .value("kTotal", platform::EventSortingKey::kTotal)
      .value("kMin", platform::EventSortingKey::kMin)
      .value("kMax", platform::EventSortingKey::kMax)
      .value("kAve", platform::EventSortingKey::kAve)
      .export_values();

  m.def("enable_profiler", platform::EnableProfiler);
  m.def("disable_profiler", platform::DisableProfiler);
X
Xin Pan 已提交
594
  m.def("is_profiler_enabled", platform::IsProfileEnabled);
595
  m.def("reset_profiler", platform::ResetProfiler);
Y
Yu Yang 已提交
596

Y
yuyang18 已提交
597
  // -- python binds for parallel executor.
Y
yuyang18 已提交
598
  py::class_<ParallelExecutor> pe(m, "ParallelExecutor");
599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616
  py::class_<ExecutionStrategy> exec_strategy(pe, "ExecutionStrategy", R"DOC(
    ExecutionStrategy allows the user to more preciously control how to run
    the program in ParallelExecutor by setting the property.

    Examples:
        .. code-block:: python

          exec_strategy = fluid.ExecutionStrategy()
          exec_strategy.num_threads = 4

          train_exe = fluid.ParallelExecutor(use_cuda=True,
                                             loss_name=loss.name,
                                             exec_strategy=exec_strategy)

          train_loss, = train_exe.run([loss.name], feed=feed_dict)

        )DOC");

Y
yuyang18 已提交
617
  exec_strategy.def(py::init())
Y
yuyang18 已提交
618 619 620 621 622
      .def_property(
          "num_threads",
          [](const ExecutionStrategy &self) { return self.num_threads_; },
          [](ExecutionStrategy &self, size_t num_threads) {
            self.num_threads_ = num_threads;
623 624 625 626 627 628 629 630 631 632
          },
          R"DOC(The type is INT, num_threads represents the size of thread pool that
            used to run the operators of the current program in ParallelExecutor.
            If :math:`num\_threads=1`, all the operators will execute one by one,
            but the order maybe difference between iterations.
            If it is not set, it will be set in ParallelExecutor according to the
            device type and device count, for GPU, :math:`num\_threads=device\_count*4`, for CPU,
            :math:`num\_threads=CPU\_NUM*4`, the explanation of:math:`CPU\_NUM` is in ParallelExecutor.
            if it is not set, ParallelExecutor will get the cpu count by calling
            `multiprocessing.cpu_count()`. Default 0.)DOC")
Y
yuyang18 已提交
633
      .def_property(
634 635 636 637
          "use_cuda",
          [](const ExecutionStrategy &self) { return self.use_cuda_; },
          [](ExecutionStrategy &self, bool use_cuda) {
            self.use_cuda_ = use_cuda;
638 639 640 641
          })  // FIXME(chengduo): Doesn't add doc for 'use_cuda', use_cuda may
      // make user confuse, because ParallelExecutor has a parameter named
      // 'use_cuda' too, in current implementation, ParallelExecutor's
      // 'use_cuda' will rewrite ExecutionStrategy's 'use_cuda'.
Y
yuyang18 已提交
642 643 644 645 646
      .def_property(
          "allow_op_delay",
          [](const ExecutionStrategy &self) { return self.allow_op_delay_; },
          [](ExecutionStrategy &self, bool allow_op_delay) {
            self.allow_op_delay_ = allow_op_delay;
647 648 649 650
          },
          R"DOC(The type is BOOL, allow_op_delay represents whether to delay the
                communication operators to run, it may make the execution faster.
                Note that in some models, allow_op_delay may cause program hang. Default False.)DOC")
Y
yuyang18 已提交
651 652 653 654 655 656 657
      .def_property(
          "num_iteration_per_drop_scope",
          [](const ExecutionStrategy &self) {
            return self.num_iteration_per_drop_scope_;
          },
          [](ExecutionStrategy &self, size_t num_iteration_per_drop_scope) {
            self.num_iteration_per_drop_scope_ = num_iteration_per_drop_scope;
658 659 660 661 662 663 664 665 666 667 668 669 670
          },
          R"DOC(The type is INT, num_iteration_per_drop_scope indicates how
                many iterations to clean up the temp variables which
                is generated during execution. It may make the execution faster,
                because the temp variable's shape maybe the same between two iterations. Default 100.

                NOTES:
                    1. If you fetch data when calling the 'run', the ParallelExecutor
                       will clean up the temp variables at the end of the current iteration.
                    2. In some NLP model, it may cause the GPU memory is insufficient,
                       in this case, you should reduce `num_iteration_per_drop_scope`.
              )DOC");

Y
yuyang18 已提交
671
  exec_strategy.def_property(
Y
yuyang18 已提交
672 673 674 675 676 677 678
      "use_experimental_executor",
      [](const ExecutionStrategy &self) {
        return self.type_ == ExecutionStrategy::kExperimental;
      },
      [](ExecutionStrategy &self, bool experimental) {
        self.type_ = experimental ? ExecutionStrategy::kExperimental
                                  : ExecutionStrategy::kDefault;
Y
yuyang18 已提交
679 680
      });

681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696
  py::class_<BuildStrategy> build_strategy(pe, "BuildStrategy", R"DOC(
    BuildStrategy allows the user to more preciously control how to
    build the SSA Graph in ParallelExecutor by setting the property.

    Examples:
        .. code-block:: python

          build_strategy = fluid.BuildStrategy()
          build_strategy.reduce_strategy = fluid.BuildStrategy.ReduceStrategy.Reduce

          train_exe = fluid.ParallelExecutor(use_cuda=True,
                                             loss_name=loss.name,
                                             build_strategy=build_strategy)

          train_loss, = train_exe.run([loss.name], feed=feed_dict)
)DOC");
Y
yuyang18 已提交
697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713

  py::enum_<BuildStrategy::ReduceStrategy>(build_strategy, "ReduceStrategy")
      .value("Reduce", BuildStrategy::ReduceStrategy::kReduce)
      .value("AllReduce", BuildStrategy::ReduceStrategy::kAllReduce);
  py::enum_<BuildStrategy::GradientScaleStrategy>(build_strategy,
                                                  "GradientScaleStrategy")
      .value("CoeffNumDevice",
             BuildStrategy::GradientScaleStrategy::kCoeffNumDevice)
      .value("One", BuildStrategy::GradientScaleStrategy::kOne)
      .value("Customized", BuildStrategy::GradientScaleStrategy::kCustomized);

  build_strategy.def(py::init())
      .def_property(
          "reduce_strategy",
          [](const BuildStrategy &self) { return self.reduce_; },
          [](BuildStrategy &self, BuildStrategy::ReduceStrategy strategy) {
            self.reduce_ = strategy;
714 715 716 717 718 719 720
          },
          R"DOC(The type is STR, there are two reduce strategies in ParallelExecutor,
                  'AllReduce' and 'Reduce'. If you want that all the parameters'
                  optimization are done on all devices independently, you should choose 'AllReduce';
                  if you choose 'Reduce', all the parameters' optimization will be evenly distributed
                  to different devices, and then broadcast the optimized parameter to other devices.
                  In some models, `Reduce` is faster. Default 'AllReduce'. )DOC")
Y
yuyang18 已提交
721 722 723 724 725 726
      .def_property(
          "gradient_scale_strategy",
          [](const BuildStrategy &self) { return self.gradient_scale_; },
          [](BuildStrategy &self,
             BuildStrategy::GradientScaleStrategy strategy) {
            self.gradient_scale_ = strategy;
727 728 729 730 731 732
          },
          R"DOC(The type is STR, there are three ways of defining :math:`loss@grad` in
                   ParallelExecutor, 'CoeffNumDevice', 'One' and 'Customized'. By default,
                   ParallelExecutor sets the :math:`loss@grad` according to the number of devices.
                   If you want to customize :math:`loss@grad`, you can choose 'Customized'.
                   Default 'CoeffNumDevice'.)DOC")
Y
yuyang18 已提交
733 734 735 736 737
      .def_property(
          "debug_graphviz_path",
          [](const BuildStrategy &self) { return self.debug_graphviz_path_; },
          [](BuildStrategy &self, const std::string &path) {
            self.debug_graphviz_path_ = path;
738 739 740 741
          },
          R"DOC(The type is STR, debug_graphviz_path indicate the path that
                    writing the SSA Graph to file in the form of graphviz, you.
                    It is useful for debugging. Default "")DOC")
F
fengjiayi 已提交
742 743 744
      .def_property(
          "enable_data_balance",
          [](const BuildStrategy &self) { return self.enable_data_balance_; },
745 746 747 748 749 750 751 752 753 754 755 756 757 758
          [](BuildStrategy &self, bool b) {
            self.enable_data_balance_ = b;
          })  // FIXME(chengudo): enable_data_balance seems not important
      .def_property(
          "fuse_elewise_add_act_ops",
          [](const BuildStrategy &self) {
            return self.fuse_elewise_add_act_ops_;
          },
          [](BuildStrategy &self, bool b) {
            self.fuse_elewise_add_act_ops_ = b;
          },
          R"DOC(The type is BOOL, fuse_elewise_add_act_ops indicate whether
                     to fuse elementwise_add_op and activation_op,
                     it may make the execution faster. Default False)DOC");
Y
yuyang18 已提交
759 760 761 762

  pe.def(py::init<const std::vector<platform::Place> &,
                  const std::unordered_set<std::string> &,
                  const std::unordered_set<std::string> &, const ProgramDesc &,
Y
yuyang18 已提交
763
                  const std::string &, Scope *, std::vector<Scope *> &,
764 765
                  const ExecutionStrategy &, const BuildStrategy &, size_t,
                  size_t>())
Y
Yu Yang 已提交
766 767 768 769
      // NOTE: even we return a vec<Scope*>* to Python use reference policy.
      // We still cannot get local_scope from this vector, since the element
      // of vec<Scope*> will be freed by Python GC. We can only return Scope*
      // one by one and mark them as reference.
770 771 772 773 774
      .def("local_scopes",
           [](ParallelExecutor &self) -> std::vector<Scope *> * {
             return &self.GetLocalScopes();
           },
           py::return_value_policy::reference)
Y
Yu Yang 已提交
775 776 777 778
      .def("feed_tensors_into_local_scopes",
           &ParallelExecutor::FeedTensorsIntoLocalScopes)
      .def("feed_and_split_tensor_into_local_scopes",
           &ParallelExecutor::FeedAndSplitTensorIntoLocalScopes)
S
sneaxiy 已提交
779 780 781 782 783 784
      .def("run", [](ParallelExecutor &self,
                     const std::vector<std::string> &fetch_tensors,
                     const std::string &fetched_var_name) {
        pybind11::gil_scoped_release release;
        self.Run(fetch_tensors, fetched_var_name);
      });
Y
Yu Yang 已提交
785

786
  BindRecordIOWriter(&m);
787
  return m.ptr();
L
Luo Tao 已提交
788
}
789
}  // namespace pybind
790
}  // namespace paddle