layer_norm_op.cc 11.3 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
C
chengduoZH 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

S
sneaxiy 已提交
15
#include <memory>
F
furnace 已提交
16
#include <string>
17

H
hong 已提交
18
#include "paddle/fluid/framework/op_registry.h"
C
chengduoZH 已提交
19

20 21 22 23
#ifdef PADDLE_WITH_MKLDNN
#include "paddle/fluid/platform/mkldnn_helper.h"
#endif

C
chengduoZH 已提交
24 25 26 27 28 29 30 31 32 33 34 35
namespace paddle {
namespace operators {

using Tensor = framework::Tensor;
using LoDTensor = framework::LoDTensor;
using DataLayout = framework::DataLayout;

class LayerNormOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext *ctx) const override {
36 37 38 39 40
    OP_INOUT_CHECK(ctx->HasInput("X"), "Input", "X", "LayerNorm");
    OP_INOUT_CHECK(ctx->HasOutput("Y"), "Output", "Y", "LayerNorm");
    OP_INOUT_CHECK(ctx->HasOutput("Mean"), "Output", "Mean", "LayerNorm");
    OP_INOUT_CHECK(ctx->HasOutput("Variance"), "Output", "Variance",
                   "LayerNorm");
C
chengduoZH 已提交
41

C
chengduoZH 已提交
42 43
    auto x_dim = ctx->GetInputDim("X");
    auto begin_norm_axis = ctx->Attrs().Get<int>("begin_norm_axis");
44 45 46 47 48 49 50
    PADDLE_ENFORCE_LT(
        begin_norm_axis, x_dim.size(),
        platform::errors::InvalidArgument(
            "'begin_norm_axis' must be less than the dimensions of X,"
            "But received 'begin_norm_axis' is [%d],"
            "received the dimensions of X is [%d].",
            begin_norm_axis, x_dim.size()));
C
chengduoZH 已提交
51

52
    auto matrix_dim = phi::flatten_to_2d(x_dim, begin_norm_axis);
C
chengduoZH 已提交
53
    int left = static_cast<int>(matrix_dim[0]);
C
chengduoZH 已提交
54
    int right = static_cast<int>(matrix_dim[1]);
C
chengduoZH 已提交
55
    if (ctx->HasInput("Scale")) {
56 57 58 59 60 61
      PADDLE_ENFORCE_EQ(ctx->GetInputDim("Scale").size(), 1,
                        platform::errors::InvalidArgument(
                            "The dimensions of Input(Scale) must be 1, but "
                            "received dimensions of"
                            "Input(Scale) is [%d]",
                            ctx->GetInputDim("Scale").size()));
P
phlrain 已提交
62 63

      if (ctx->IsRuntime()) {
64 65 66 67 68 69 70 71 72
        PADDLE_ENFORCE_EQ(
            ctx->GetInputDim("Scale")[0], right,
            platform::errors::InvalidArgument(
                "The first dimension value of Input(Scale) must equal to be the"
                "second dimension value of the flattened 2D matrix of Input(X),"
                "But received the first dimension value of Input(Scale) is"
                "[%d], the second dimension value of the flattened 2D matrix of"
                " Input(Scale) is [%d].",
                ctx->GetInputDim("Scale")[0], right));
P
phlrain 已提交
73
      }
C
chengduoZH 已提交
74 75
    }
    if (ctx->HasInput("Bias")) {
76 77 78 79 80 81
      PADDLE_ENFORCE_EQ(ctx->GetInputDim("Bias").size(), 1,
                        platform::errors::InvalidArgument(
                            "The dimensions of Input(Bias) must be 1, but "
                            "received dimensions of"
                            "Input(Bias) is [%d]",
                            ctx->GetInputDim("Bias").size()));
P
phlrain 已提交
82
      if (ctx->IsRuntime()) {
83 84 85 86 87 88 89 90 91
        PADDLE_ENFORCE_EQ(
            ctx->GetInputDim("Bias")[0], right,
            platform::errors::InvalidArgument(
                "The first dimension value of Input(Bias) must equal to be the"
                "second dimension value of the flattened 2D matrix of Input(X),"
                "But received the first dimension value of Input(Bias) is"
                "[%d], the second dimension value of the flattened 2D matrix of"
                " Input(Bias) is [%d].",
                ctx->GetInputDim("Scale")[0], right));
P
phlrain 已提交
92
      }
C
chengduoZH 已提交
93
    }
C
chengduoZH 已提交
94

C
chengduoZH 已提交
95
    ctx->SetOutputDim("Y", ctx->GetInputDim("X"));
C
chengduoZH 已提交
96 97
    ctx->SetOutputDim("Mean", {left});
    ctx->SetOutputDim("Variance", {left});
C
chengduoZH 已提交
98 99
    ctx->ShareLoD("X", "Y");
  }
100 101 102

 protected:
  framework::OpKernelType GetExpectedKernelType(
F
furnace 已提交
103 104
      const framework::ExecutionContext &ctx) const override {
    auto input_data_type = OperatorWithKernel::IndicateVarDataType(ctx, "X");
105 106 107 108
    framework::LibraryType library = framework::LibraryType::kPlain;
    framework::DataLayout layout = framework::DataLayout::kAnyLayout;

#ifdef PADDLE_WITH_MKLDNN
109
    int begin_norm_axis = ctx.Attr<int>("begin_norm_axis");
110
    if (library == framework::LibraryType::kPlain &&
111 112
        this->CanMKLDNNBeUsed(ctx, input_data_type) &&
        begin_norm_axis == ctx.Input<Tensor>("X")->dims().size() - 1) {
113 114 115 116 117
      library = framework::LibraryType::kMKLDNN;
      layout = framework::DataLayout::kMKLDNN;
    }
#endif

F
furnace 已提交
118 119
    return framework::OpKernelType(input_data_type, ctx.GetPlace(), layout,
                                   library);
120
  }
C
chengduoZH 已提交
121 122 123 124
};

class LayerNormOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
Y
Yu Yang 已提交
125
  void Make() override {
Y
yuyang18 已提交
126
    AddInput("X", "The input tensor.");
C
chengduoZH 已提交
127
    AddInput("Scale",
Y
yuyang18 已提交
128
             "(optional) Scale is a 1-dimensional tensor of size "
C
chengduoZH 已提交
129 130 131
             "H(`begin_norm_axis` splits the tensor(`X`) to a matrix [N,H])."
             "It is applied to the output.")
        .AsDispensable();
C
chengduoZH 已提交
132
    AddInput("Bias",
Y
yuyang18 已提交
133
             "(optional) Bias is a 1-dimensional tensor of size "
C
chengduoZH 已提交
134 135 136
             "H(`begin_norm_axis` splits the tensor(`X`) to a matrix [N,H])."
             "It is applied to the output.")
        .AsDispensable();
Y
yuyang18 已提交
137 138 139
    AddOutput("Y", "Result after normalization.");
    AddOutput("Mean", "Mean of the current mini batch.").AsIntermediate();
    AddOutput("Variance", "Variance of the current mini batch.")
C
chengduoZH 已提交
140 141 142
        .AsIntermediate();

    AddAttr<float>("epsilon",
Y
yuyang18 已提交
143
                   "Constant for numerical stability [default 1e-5].")
C
chengduoZH 已提交
144 145
        .SetDefault(1e-5)
        .AddCustomChecker([](const float &epsilon) {
146 147 148 149 150
          PADDLE_ENFORCE_EQ(epsilon >= 0.0f && epsilon <= 0.001f, true,
                            platform::errors::InvalidArgument(
                                "'epsilon' in Op(LayerNorm) should be between"
                                "0.0 and 0.001, But received [%s].",
                                epsilon));
C
chengduoZH 已提交
151
        });
C
chengduoZH 已提交
152
    AddAttr<int>("begin_norm_axis",
Y
yuyang18 已提交
153
                 "the axis of `begin_norm_axis ... Rank(X) - 1` will be "
C
chengduoZH 已提交
154
                 "normalized. `begin_norm_axis` splits the tensor(`X`) to a "
Y
yuyang18 已提交
155
                 "matrix [N,H]. [default 1].")
C
chengduoZH 已提交
156 157 158
        .SetDefault(1)
        .AddCustomChecker([](const int &begin_norm_axis) {
          PADDLE_ENFORCE_GT(begin_norm_axis, 0,
159 160 161 162
                            platform::errors::InvalidArgument(
                                "'begin_norm_axis' in Op(LayerNorm) should be"
                                "greater than zero. But received [%d].",
                                begin_norm_axis));
C
chengduoZH 已提交
163
        });
164 165
    AddAttr<bool>("use_mkldnn",
                  "(bool, default false) Only used in mkldnn kernel")
166 167
        .SetDefault(false)
        .AsExtra();
168 169 170 171
    AddAttr<std::string>(
        "mkldnn_data_type",
        "(string, default \"float32\"). Data type of mkldnn kernel")
        .SetDefault("float32")
172 173
        .InEnum({"float32", "bfloat16"})
        .AsExtra();
174 175 176
    AddAttr<bool>("is_test",
                  "(bool, default false) Set to true for inference only, false "
                  "for training. Some layers may run faster when this is true.")
177 178
        .SetDefault(false)
        .AsExtra();
C
chengduoZH 已提交
179 180

    AddComment(R"DOC(
Y
yuyang18 已提交
181 182 183 184 185 186 187 188
Assume feature vectors exist on dimensions
:attr:`begin_norm_axis ... rank(input)` and calculate the moment statistics
along these dimensions for each feature vector :math:`a` with size
:math:`H`, then normalize each feature vector using the corresponding
statistics. After that, apply learnable gain and bias on the normalized
tensor to scale and shift if :attr:`scale` and :attr:`shift` are set.

Refer to `Layer Normalization <https://arxiv.org/pdf/1607.06450v1.pdf>`_
C
chengduoZH 已提交
189 190 191 192 193 194 195 196 197 198
)DOC");
  }
};

class LayerNormGradOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext *ctx) const override {
    // check input
199 200 201 202 203 204
    OP_INOUT_CHECK(ctx->HasInput("X"), "Input", "X", "LayerNormGrad");
    OP_INOUT_CHECK(ctx->HasInput("Mean"), "Input", "Mean", "LayerNormGrad");
    OP_INOUT_CHECK(ctx->HasInput("Variance"), "Input", "Variance",
                   "LayerNormGrad");
    OP_INOUT_CHECK(ctx->HasInput(framework::GradVarName("Y")), "Input",
                   framework::GradVarName("Y"), "LayerNormGrad");
C
chengduoZH 已提交
205 206 207

    // check output
    if (ctx->HasOutput(framework::GradVarName("X"))) {
C
chengduoZH 已提交
208
      ctx->SetOutputDim(framework::GradVarName("X"), ctx->GetInputDim("X"));
C
chengduoZH 已提交
209 210
    }
    if (ctx->HasOutput(framework::GradVarName("Scale"))) {
C
chengduoZH 已提交
211 212
      ctx->SetOutputDim(framework::GradVarName("Scale"),
                        ctx->GetInputDim("Scale"));
C
chengduoZH 已提交
213 214
    }
    if (ctx->HasOutput(framework::GradVarName("Bias"))) {
C
chengduoZH 已提交
215
      ctx->SetOutputDim(framework::GradVarName("Bias"),
216
                        ctx->GetInputDim("Bias"));
C
chengduoZH 已提交
217 218 219 220 221 222 223
    }
  }

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext &ctx) const override {
    const auto *var = ctx.InputVar(framework::GradVarName("Y"));
224 225
    PADDLE_ENFORCE_NOT_NULL(var, platform::errors::NotFound(
                                     "Y@GRAD of LayerNorm Op is not found."));
C
chengduoZH 已提交
226 227 228 229 230 231
    const Tensor *t = nullptr;
    if (var->IsType<Tensor>()) {
      t = &var->Get<Tensor>();
    } else if (var->IsType<LoDTensor>()) {
      t = &var->Get<LoDTensor>();
    }
232 233
    PADDLE_ENFORCE_NOT_NULL(
        t, platform::errors::NotFound("Y@GRAD of LayerNorm Op is not found."));
F
furnace 已提交
234 235 236 237 238 239 240

    framework::LibraryType library = framework::LibraryType::kPlain;
    framework::DataLayout layout = framework::DataLayout::kAnyLayout;

    return framework::OpKernelType(
        OperatorWithKernel::IndicateVarDataType(ctx, "X"), ctx.GetPlace(),
        layout, library);
C
chengduoZH 已提交
241 242 243
  }
};

H
hong 已提交
244 245
template <typename T>
class LayerNormGradOpMaker : public framework::SingleGradOpMaker<T> {
S
sneaxiy 已提交
246
 public:
H
hong 已提交
247
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;
S
sneaxiy 已提交
248 249

 protected:
250
  void Apply(GradOpPtr<T> op) const override {
S
sneaxiy 已提交
251
    op->SetType("layer_norm_grad");
H
hong 已提交
252 253 254 255 256 257
    op->SetInput("X", this->Input("X"));
    op->SetInput("Mean", this->Output("Mean"));
    op->SetInput("Variance", this->Output("Variance"));
    if (this->HasInput("Scale")) {
      op->SetInput("Scale", this->Input("Scale"));
      op->SetOutput(framework::GradVarName("Scale"), this->InputGrad("Scale"));
S
sneaxiy 已提交
258 259
    }

H
hong 已提交
260
    if (this->HasInput("Bias")) {
261
      op->SetInput("Bias", this->Input("Bias"));
H
hong 已提交
262
      op->SetOutput(framework::GradVarName("Bias"), this->InputGrad("Bias"));
S
sneaxiy 已提交
263 264
    }

H
hong 已提交
265 266 267
    op->SetInput(framework::GradVarName("Y"), this->OutputGrad("Y"));
    op->SetOutput(framework::GradVarName("X"), this->InputGrad("X"));
    op->SetAttrMap(this->Attrs());
S
sneaxiy 已提交
268 269 270
  }
};

271
DECLARE_NO_NEED_BUFFER_VARS_INFERER(LayerNormGradNoNeedBufferVarInferer,
272 273
                                    "Bias");

C
chengduoZH 已提交
274 275 276 277
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
Y
Yang Yang 已提交
278
REGISTER_OPERATOR(layer_norm, ops::LayerNormOp, ops::LayerNormOpMaker,
H
hong 已提交
279 280
                  ops::LayerNormGradOpMaker<paddle::framework::OpDesc>,
                  ops::LayerNormGradOpMaker<paddle::imperative::OpBase>);
281
REGISTER_OPERATOR(layer_norm_grad, ops::LayerNormGradOp,
282
                  ops::LayerNormGradNoNeedBufferVarInferer);