layer_norm_op.cc 11.2 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
C
chengduoZH 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

Y
Yi Wang 已提交
15
#include "paddle/fluid/operators/layer_norm_op.h"
S
sneaxiy 已提交
16
#include <memory>
C
chengduoZH 已提交
17

18 19 20 21
#ifdef PADDLE_WITH_MKLDNN
#include "paddle/fluid/platform/mkldnn_helper.h"
#endif

C
chengduoZH 已提交
22 23 24 25 26 27 28 29 30 31 32 33
namespace paddle {
namespace operators {

using Tensor = framework::Tensor;
using LoDTensor = framework::LoDTensor;
using DataLayout = framework::DataLayout;

class LayerNormOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext *ctx) const override {
34 35 36 37 38
    OP_INOUT_CHECK(ctx->HasInput("X"), "Input", "X", "LayerNorm");
    OP_INOUT_CHECK(ctx->HasOutput("Y"), "Output", "Y", "LayerNorm");
    OP_INOUT_CHECK(ctx->HasOutput("Mean"), "Output", "Mean", "LayerNorm");
    OP_INOUT_CHECK(ctx->HasOutput("Variance"), "Output", "Variance",
                   "LayerNorm");
C
chengduoZH 已提交
39

C
chengduoZH 已提交
40 41
    auto x_dim = ctx->GetInputDim("X");
    auto begin_norm_axis = ctx->Attrs().Get<int>("begin_norm_axis");
42 43 44 45 46 47 48
    PADDLE_ENFORCE_LT(
        begin_norm_axis, x_dim.size(),
        platform::errors::InvalidArgument(
            "'begin_norm_axis' must be less than the dimensions of X,"
            "But received 'begin_norm_axis' is [%d],"
            "received the dimensions of X is [%d].",
            begin_norm_axis, x_dim.size()));
C
chengduoZH 已提交
49 50 51

    auto matrix_dim = framework::flatten_to_2d(x_dim, begin_norm_axis);
    int left = static_cast<int>(matrix_dim[0]);
C
chengduoZH 已提交
52
    int right = static_cast<int>(matrix_dim[1]);
C
chengduoZH 已提交
53
    if (ctx->HasInput("Scale")) {
54 55 56 57 58 59
      PADDLE_ENFORCE_EQ(ctx->GetInputDim("Scale").size(), 1,
                        platform::errors::InvalidArgument(
                            "The dimensions of Input(Scale) must be 1, but "
                            "received dimensions of"
                            "Input(Scale) is [%d]",
                            ctx->GetInputDim("Scale").size()));
P
phlrain 已提交
60 61

      if (ctx->IsRuntime()) {
62 63 64 65 66 67 68 69 70
        PADDLE_ENFORCE_EQ(
            ctx->GetInputDim("Scale")[0], right,
            platform::errors::InvalidArgument(
                "The first dimension value of Input(Scale) must equal to be the"
                "second dimension value of the flattened 2D matrix of Input(X),"
                "But received the first dimension value of Input(Scale) is"
                "[%d], the second dimension value of the flattened 2D matrix of"
                " Input(Scale) is [%d].",
                ctx->GetInputDim("Scale")[0], right));
P
phlrain 已提交
71
      }
C
chengduoZH 已提交
72 73
    }
    if (ctx->HasInput("Bias")) {
74 75 76 77 78 79
      PADDLE_ENFORCE_EQ(ctx->GetInputDim("Bias").size(), 1,
                        platform::errors::InvalidArgument(
                            "The dimensions of Input(Bias) must be 1, but "
                            "received dimensions of"
                            "Input(Bias) is [%d]",
                            ctx->GetInputDim("Bias").size()));
P
phlrain 已提交
80
      if (ctx->IsRuntime()) {
81 82 83 84 85 86 87 88 89
        PADDLE_ENFORCE_EQ(
            ctx->GetInputDim("Bias")[0], right,
            platform::errors::InvalidArgument(
                "The first dimension value of Input(Bias) must equal to be the"
                "second dimension value of the flattened 2D matrix of Input(X),"
                "But received the first dimension value of Input(Bias) is"
                "[%d], the second dimension value of the flattened 2D matrix of"
                " Input(Bias) is [%d].",
                ctx->GetInputDim("Scale")[0], right));
P
phlrain 已提交
90
      }
C
chengduoZH 已提交
91
    }
C
chengduoZH 已提交
92

C
chengduoZH 已提交
93
    ctx->SetOutputDim("Y", ctx->GetInputDim("X"));
C
chengduoZH 已提交
94 95
    ctx->SetOutputDim("Mean", {left});
    ctx->SetOutputDim("Variance", {left});
C
chengduoZH 已提交
96 97
    ctx->ShareLoD("X", "Y");
  }
98 99 100 101 102 103 104 105 106

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext &ctx) const {
    framework::LibraryType library = framework::LibraryType::kPlain;
    framework::DataLayout layout = framework::DataLayout::kAnyLayout;

#ifdef PADDLE_WITH_MKLDNN
    if (library == framework::LibraryType::kPlain &&
107
        this->CanMKLDNNBeUsed(ctx)) {
108 109 110 111 112 113 114 115 116
      library = framework::LibraryType::kMKLDNN;
      layout = framework::DataLayout::kMKLDNN;
    }
#endif

    return framework::OpKernelType(
        OperatorWithKernel::IndicateVarDataType(ctx, "X"), ctx.GetPlace(),
        layout, library);
  }
C
chengduoZH 已提交
117 118 119 120
};

class LayerNormOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
Y
Yu Yang 已提交
121
  void Make() override {
Y
yuyang18 已提交
122
    AddInput("X", "The input tensor.");
C
chengduoZH 已提交
123
    AddInput("Scale",
Y
yuyang18 已提交
124
             "(optional) Scale is a 1-dimensional tensor of size "
C
chengduoZH 已提交
125 126 127
             "H(`begin_norm_axis` splits the tensor(`X`) to a matrix [N,H])."
             "It is applied to the output.")
        .AsDispensable();
C
chengduoZH 已提交
128
    AddInput("Bias",
Y
yuyang18 已提交
129
             "(optional) Bias is a 1-dimensional tensor of size "
C
chengduoZH 已提交
130 131 132
             "H(`begin_norm_axis` splits the tensor(`X`) to a matrix [N,H])."
             "It is applied to the output.")
        .AsDispensable();
Y
yuyang18 已提交
133 134 135
    AddOutput("Y", "Result after normalization.");
    AddOutput("Mean", "Mean of the current mini batch.").AsIntermediate();
    AddOutput("Variance", "Variance of the current mini batch.")
C
chengduoZH 已提交
136 137 138
        .AsIntermediate();

    AddAttr<float>("epsilon",
Y
yuyang18 已提交
139
                   "Constant for numerical stability [default 1e-5].")
C
chengduoZH 已提交
140 141
        .SetDefault(1e-5)
        .AddCustomChecker([](const float &epsilon) {
142 143 144 145 146
          PADDLE_ENFORCE_EQ(epsilon >= 0.0f && epsilon <= 0.001f, true,
                            platform::errors::InvalidArgument(
                                "'epsilon' in Op(LayerNorm) should be between"
                                "0.0 and 0.001, But received [%s].",
                                epsilon));
C
chengduoZH 已提交
147
        });
C
chengduoZH 已提交
148
    AddAttr<int>("begin_norm_axis",
Y
yuyang18 已提交
149
                 "the axis of `begin_norm_axis ... Rank(X) - 1` will be "
C
chengduoZH 已提交
150
                 "normalized. `begin_norm_axis` splits the tensor(`X`) to a "
Y
yuyang18 已提交
151
                 "matrix [N,H]. [default 1].")
C
chengduoZH 已提交
152 153 154
        .SetDefault(1)
        .AddCustomChecker([](const int &begin_norm_axis) {
          PADDLE_ENFORCE_GT(begin_norm_axis, 0,
155 156 157 158
                            platform::errors::InvalidArgument(
                                "'begin_norm_axis' in Op(LayerNorm) should be"
                                "greater than zero. But received [%d].",
                                begin_norm_axis));
C
chengduoZH 已提交
159
        });
160 161 162 163 164 165 166 167 168 169 170 171
    AddAttr<bool>("use_mkldnn",
                  "(bool, default false) Only used in mkldnn kernel")
        .SetDefault(false);
    AddAttr<std::string>(
        "mkldnn_data_type",
        "(string, default \"float32\"). Data type of mkldnn kernel")
        .SetDefault("float32")
        .InEnum({"float32", "bfloat16"});
    AddAttr<bool>("is_test",
                  "(bool, default false) Set to true for inference only, false "
                  "for training. Some layers may run faster when this is true.")
        .SetDefault(false);
C
chengduoZH 已提交
172 173

    AddComment(R"DOC(
Y
yuyang18 已提交
174 175 176 177 178 179 180 181
Assume feature vectors exist on dimensions
:attr:`begin_norm_axis ... rank(input)` and calculate the moment statistics
along these dimensions for each feature vector :math:`a` with size
:math:`H`, then normalize each feature vector using the corresponding
statistics. After that, apply learnable gain and bias on the normalized
tensor to scale and shift if :attr:`scale` and :attr:`shift` are set.

Refer to `Layer Normalization <https://arxiv.org/pdf/1607.06450v1.pdf>`_
C
chengduoZH 已提交
182 183 184 185 186 187 188 189 190 191
)DOC");
  }
};

class LayerNormGradOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext *ctx) const override {
    // check input
192 193 194 195 196 197
    OP_INOUT_CHECK(ctx->HasInput("X"), "Input", "X", "LayerNormGrad");
    OP_INOUT_CHECK(ctx->HasInput("Mean"), "Input", "Mean", "LayerNormGrad");
    OP_INOUT_CHECK(ctx->HasInput("Variance"), "Input", "Variance",
                   "LayerNormGrad");
    OP_INOUT_CHECK(ctx->HasInput(framework::GradVarName("Y")), "Input",
                   framework::GradVarName("Y"), "LayerNormGrad");
C
chengduoZH 已提交
198 199 200

    // check output
    if (ctx->HasOutput(framework::GradVarName("X"))) {
C
chengduoZH 已提交
201
      ctx->SetOutputDim(framework::GradVarName("X"), ctx->GetInputDim("X"));
C
chengduoZH 已提交
202 203
    }
    if (ctx->HasOutput(framework::GradVarName("Scale"))) {
C
chengduoZH 已提交
204 205
      ctx->SetOutputDim(framework::GradVarName("Scale"),
                        ctx->GetInputDim("Scale"));
C
chengduoZH 已提交
206 207
    }
    if (ctx->HasOutput(framework::GradVarName("Bias"))) {
C
chengduoZH 已提交
208
      ctx->SetOutputDim(framework::GradVarName("Bias"),
209
                        ctx->GetInputDim("Bias"));
C
chengduoZH 已提交
210 211 212 213 214 215 216
    }
  }

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext &ctx) const override {
    const auto *var = ctx.InputVar(framework::GradVarName("Y"));
217 218
    PADDLE_ENFORCE_NOT_NULL(var, platform::errors::NotFound(
                                     "Y@GRAD of LayerNorm Op is not found."));
C
chengduoZH 已提交
219 220 221 222 223 224
    const Tensor *t = nullptr;
    if (var->IsType<Tensor>()) {
      t = &var->Get<Tensor>();
    } else if (var->IsType<LoDTensor>()) {
      t = &var->Get<LoDTensor>();
    }
225 226
    PADDLE_ENFORCE_NOT_NULL(
        t, platform::errors::NotFound("Y@GRAD of LayerNorm Op is not found."));
Y
Yu Yang 已提交
227
    return framework::OpKernelType(t->type(), ctx.GetPlace());
C
chengduoZH 已提交
228 229 230
  }
};

H
hong 已提交
231 232
template <typename T>
class LayerNormGradOpMaker : public framework::SingleGradOpMaker<T> {
S
sneaxiy 已提交
233
 public:
H
hong 已提交
234
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;
S
sneaxiy 已提交
235 236

 protected:
237
  void Apply(GradOpPtr<T> op) const override {
S
sneaxiy 已提交
238
    op->SetType("layer_norm_grad");
H
hong 已提交
239 240 241 242 243 244
    op->SetInput("X", this->Input("X"));
    op->SetInput("Mean", this->Output("Mean"));
    op->SetInput("Variance", this->Output("Variance"));
    if (this->HasInput("Scale")) {
      op->SetInput("Scale", this->Input("Scale"));
      op->SetOutput(framework::GradVarName("Scale"), this->InputGrad("Scale"));
S
sneaxiy 已提交
245 246
    }

H
hong 已提交
247
    if (this->HasInput("Bias")) {
248
      op->SetInput("Bias", this->Input("Bias"));
H
hong 已提交
249
      op->SetOutput(framework::GradVarName("Bias"), this->InputGrad("Bias"));
S
sneaxiy 已提交
250 251
    }

H
hong 已提交
252 253 254
    op->SetInput(framework::GradVarName("Y"), this->OutputGrad("Y"));
    op->SetOutput(framework::GradVarName("X"), this->InputGrad("X"));
    op->SetAttrMap(this->Attrs());
S
sneaxiy 已提交
255 256 257
  }
};

258
DECLARE_NO_NEED_BUFFER_VARS_INFERER(LayerNormGradNoNeedBufferVarInferer,
259 260
                                    "Bias");

C
chengduoZH 已提交
261 262 263 264
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
Y
Yang Yang 已提交
265
REGISTER_OPERATOR(layer_norm, ops::LayerNormOp, ops::LayerNormOpMaker,
H
hong 已提交
266 267
                  ops::LayerNormGradOpMaker<paddle::framework::OpDesc>,
                  ops::LayerNormGradOpMaker<paddle::imperative::OpBase>);
268
REGISTER_OPERATOR(layer_norm_grad, ops::LayerNormGradOp,
269
                  ops::LayerNormGradNoNeedBufferVarInferer);
C
chengduoZH 已提交
270
REGISTER_OP_CPU_KERNEL(
C
chengduoZH 已提交
271 272
    layer_norm, ops::LayerNormKernel<paddle::platform::CPUDeviceContext, float>,
    ops::LayerNormKernel<paddle::platform::CPUDeviceContext, double>);
C
chengduoZH 已提交
273 274
REGISTER_OP_CPU_KERNEL(
    layer_norm_grad,
C
chengduoZH 已提交
275 276
    ops::LayerNormGradKernel<paddle::platform::CPUDeviceContext, float>,
    ops::LayerNormGradKernel<paddle::platform::CPUDeviceContext, double>);