gaussian_random_op.cc 7.1 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
L
Luo Tao 已提交
2 3 4 5 6 7 8 9 10 11 12 13

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
D
dongzhihong 已提交
14

Q
qijun 已提交
15
#include <random>
Y
yaoxuefeng 已提交
16

17
#include "paddle/fluid/framework/generator.h"
Y
Yi Wang 已提交
18
#include "paddle/fluid/framework/op_registry.h"
19
#include "paddle/fluid/operators/fill_constant_op.h"
20 21 22 23
#ifdef PADDLE_WITH_MKLDNN
#include "paddle/fluid/platform/mkldnn_helper.h"
#endif

D
dongzhihong 已提交
24 25
namespace paddle {
namespace operators {
D
dongzhihong 已提交
26

27
using Tensor = framework::Tensor;
Q
qijun 已提交
28
template <typename T>
Y
Yu Yang 已提交
29
class CPUGaussianRandomKernel : public framework::OpKernel<T> {
30 31 32 33 34
 public:
  void Compute(const framework::ExecutionContext& context) const override {
    float mean = context.Attr<float>("mean");
    float std = context.Attr<float>("std");
    auto* tensor = context.Output<framework::Tensor>("Out");
Y
yaoxuefeng 已提交
35

36 37 38 39 40 41
    std::normal_distribution<T> dist(mean, std);
    const std::string op_type = "gaussian_random";
    auto shape = GetShape(context, op_type);
    tensor->Resize(shape);
    int64_t size = tensor->numel();
    T* data = tensor->mutable_data<T>(context.GetPlace());
L
Leo Chen 已提交
42 43
    unsigned int seed = static_cast<unsigned int>(context.Attr<int>("seed"));
    auto engine = framework::GetCPURandomEngine(seed);
44

L
Leo Chen 已提交
45 46
    for (int64_t i = 0; i < size; ++i) {
      data[i] = dist(*engine);
47 48
    }
  }
L
Leo Chen 已提交
49
};  // namespace operators
50 51 52

template <typename T>
class CPUGaussianRandomBatchSizeLikeKernel : public framework::OpKernel<T> {
Q
qijun 已提交
53 54
 public:
  void Compute(const framework::ExecutionContext& context) const override {
Y
Yu Yang 已提交
55 56
    float mean = context.Attr<float>("mean");
    float std = context.Attr<float>("std");
Q
qijun 已提交
57 58 59
    auto* tensor = context.Output<framework::Tensor>("Out");
    T* data = tensor->mutable_data<T>(context.GetPlace());

Y
Yu Yang 已提交
60
    unsigned int seed = static_cast<unsigned int>(context.Attr<int>("seed"));
Q
qijun 已提交
61 62 63 64 65 66
    std::minstd_rand engine;
    if (seed == 0) {
      seed = std::random_device()();
    }
    engine.seed(seed);
    std::normal_distribution<T> dist(mean, std);
67
    int64_t size = tensor->numel();
Q
qijun 已提交
68
    for (int64_t i = 0; i < size; ++i) {
Q
qijun 已提交
69 70 71 72 73
      data[i] = dist(engine);
    }
  }
};

D
dongzhihong 已提交
74
class GaussianRandomOp : public framework::OperatorWithKernel {
Y
Yu Yang 已提交
75 76
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;
77

78
  void InferShape(framework::InferShapeContext* ctx) const override {
79 80
    OP_INOUT_CHECK(ctx->HasOutput("Out"), "Output", "Out", "GaussianRandom");

T
tangwei12 已提交
81
    auto shape = ctx->Attrs().Get<std::vector<int64_t>>("shape");
Q
qijun 已提交
82
    std::vector<int64_t> temp;
83 84
    temp.reserve(shape.size());
    for (auto dim : shape) {
Q
qijun 已提交
85 86
      temp.push_back(static_cast<int64_t>(dim));
    }
87 88 89 90 91 92 93 94 95 96 97
    if (shape.empty() && ctx->HasInput("ShapeTensor")) {
      auto shape_dims = ctx->GetInputDim("ShapeTensor");
      int num_ele = 1;
      for (int i = 0; i < shape_dims.size(); ++i) {
        num_ele *= shape_dims[i];
      }
      auto vec_dims = std::vector<int>(num_ele, -1);
      ctx->SetOutputDim("Out", framework::make_ddim(vec_dims));

      return;
    }
98
    if (!ctx->HasInput("ShapeTensor") && !ctx->HasInputs("ShapeTensorList")) {
99 100 101 102 103 104 105 106
      PADDLE_ENFORCE_GT(
          shape.size(), 0UL,
          platform::errors::InvalidArgument(
              "Attribute(shape) of GaussianRandomOp must be set "
              "and shape.size() > 0, but reveived shape.size() is %d",
              shape.size()));
    }

Q
Qiao Longfei 已提交
107
    ctx->SetOutputDim("Out", framework::make_ddim(temp));
D
dongzhihong 已提交
108
  }
Y
Yu Yang 已提交
109

110
 protected:
111
  framework::OpKernelType GetExpectedKernelType(
Y
Yu Yang 已提交
112
      const framework::ExecutionContext& ctx) const override {
113 114 115 116 117 118 119 120 121 122 123
    framework::LibraryType library{framework::LibraryType::kPlain};
    framework::DataLayout layout{framework::DataLayout::kAnyLayout};

#ifdef PADDLE_WITH_MKLDNN
    if (library == framework::LibraryType::kPlain &&
        platform::CanMKLDNNBeUsed(ctx)) {
      library = framework::LibraryType::kMKLDNN;
      layout = framework::DataLayout::kMKLDNN;
    }
#endif

Y
Yu Yang 已提交
124
    return framework::OpKernelType(
125
        static_cast<framework::proto::VarType::Type>(ctx.Attr<int>("dtype")),
126
        ctx.device_context(), layout, library);
Y
Yu Yang 已提交
127
  }
128 129 130 131 132 133 134 135 136 137

  framework::OpKernelType GetKernelTypeForVar(
      const std::string& var_name, const Tensor& tensor,
      const framework::OpKernelType& expected_kernel_type) const override {
    if (var_name == "ShapeTensor" || var_name == "ShapeTensorList") {
      return expected_kernel_type;
    }
    return framework::OpKernelType(expected_kernel_type.data_type_,
                                   tensor.place(), tensor.layout());
  }
D
dongzhihong 已提交
138 139
};

D
dongzhihong 已提交
140
class GaussianRandomOpMaker : public framework::OpProtoAndCheckerMaker {
D
dongzhihong 已提交
141
 public:
Y
Yu Yang 已提交
142
  void Make() override {
K
kexinzhao 已提交
143
    AddOutput("Out", "Output matrix of gaussian random op");
144

T
tangwei12 已提交
145 146
    AddAttr<std::vector<int64_t>>("shape",
                                  "(vector<int64_t>) "
147 148 149 150 151 152 153 154 155 156 157 158
                                  "The dimension of random tensor.")
        .SetDefault({});
    AddInput("ShapeTensor",
             "(Tensor<int>), optional). The shape of the output."
             "It has a higher priority than Attr(shape).")
        .AsDispensable();
    AddInput("ShapeTensorList",
             "(vector<Tensor<int>>, optional). The shape of the output. "
             "It has a higher priority than Attr(shape)."
             "The shape of the element in vector must be [1].")
        .AsDuplicable()
        .AsDispensable();
K
kexinzhao 已提交
159 160 161 162 163 164 165 166
    AddAttr<float>("mean",
                   "(float, default 0.0) "
                   "mean of random tensor.")
        .SetDefault(.0f);
    AddAttr<float>("std",
                   "(float, default 1.0) "
                   "std of random tensor.")
        .SetDefault(1.0f);
Q
qijun 已提交
167
    AddAttr<int>("seed",
K
kexinzhao 已提交
168
                 "(int, default 0) "
Q
qijun 已提交
169
                 "Random seed of generator."
170 171 172
                 "0 means use system wide seed."
                 "Note that if seed is not 0, this operator will always "
                 "generate the same random numbers every time.")
Q
qijun 已提交
173
        .SetDefault(0);
F
fengjiayi 已提交
174
    AddAttr<int>("dtype",
K
kexinzhao 已提交
175 176
                 "(int, default 5(FP32)) "
                 "Output data type.")
177
        .SetDefault(framework::proto::VarType::FP32);
178 179 180
    AddAttr<bool>("use_mkldnn",
                  "(bool, default false) Only used in mkldnn kernel")
        .SetDefault(false);
K
kexinzhao 已提交
181 182 183 184 185 186
    AddComment(R"DOC(
GaussianRandom Operator.

Used to initialize tensors with gaussian random generator.

)DOC");
D
dongzhihong 已提交
187 188 189 190 191 192
  }
};

}  // namespace operators
}  // namespace paddle

193
namespace ops = paddle::operators;
F
fengjiayi 已提交
194 195
REGISTER_OP_WITHOUT_GRADIENT(gaussian_random, ops::GaussianRandomOp,
                             ops::GaussianRandomOpMaker);
196 197 198
REGISTER_OP_CPU_KERNEL(gaussian_random, ops::CPUGaussianRandomKernel<float>,
                       ops::CPUGaussianRandomKernel<double>);
REGISTER_OP_CPU_KERNEL(gaussian_random_batch_size_like,
199 200
                       ops::CPUGaussianRandomBatchSizeLikeKernel<float>,
                       ops::CPUGaussianRandomBatchSizeLikeKernel<double>);