ExpandConvLayer.cpp 8.6 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Z
zhangjinchao01 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

Y
Yu Yang 已提交
15
#include "ExpandConvLayer.h"
X
Xin Pan 已提交
16 17
#include "paddle/legacy/utils/Logging.h"
#include "paddle/legacy/utils/Stat.h"
Z
zhangjinchao01 已提交
18

19 20 21 22
DEFINE_bool(use_nnpack,
            false,
            "Whether to use nnpack for convolution calculation.");

Z
zhangjinchao01 已提交
23 24
namespace paddle {

25 26 27 28
/*
 * The calculation of the exconvt(convolution transpose (deconv) operation)
 * is a swap of forward and backward of the calculation of exconv.
 * */
Z
zhangjinchao01 已提交
29
REGISTER_LAYER(exconv, ExpandConvLayer);
30
REGISTER_LAYER(exconvt, ExpandConvLayer);
Z
zhangjinchao01 已提交
31

32 33 34 35
inline bool isDepthwiseConv(int channels, int groups) {
  return channels == groups;
}

Z
zhangjinchao01 已提交
36 37 38
bool ExpandConvLayer::init(const LayerMap &layerMap,
                           const ParameterMap &parameterMap) {
  /* Initialize the basic convolutional parent class */
H
hedaoyuan 已提交
39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55
  ConvBaseLayer::init(layerMap, parameterMap);

  int index = 0;
  for (auto &inputConfig : config_.inputs()) {
    const ConvConfig &conf = inputConfig.conv_conf();
    /* Consistent caffe mode for multiple input */
    caffeMode_ = conf.caffe_mode();

    // create a new weight
    size_t height, width;
    height = filterPixels_[index] * filterChannels_[index];
    width = (!isDeconv_) ? numFilters_ : channels_[index];
    CHECK_EQ(parameters_[index]->getSize(), width * height);
    Weight *w = new Weight(height, width, parameters_[index]);
    weights_.emplace_back(w);
    index++;
  }
H
hedaoyuan 已提交
56

H
hedaoyuan 已提交
57 58 59
  if (biasParameter_.get()) {
    if (sharedBiases_) {
      CHECK_EQ((size_t)numFilters_, biasParameter_->getSize());
H
hedaoyuan 已提交
60 61
      biases_ = std::unique_ptr<Weight>(
          new Weight(1, numFilters_, biasParameter_, 0));
H
hedaoyuan 已提交
62 63
    } else {
      biases_ =
H
hedaoyuan 已提交
64
          std::unique_ptr<Weight>(new Weight(1, getSize(), biasParameter_, 0));
H
hedaoyuan 已提交
65 66 67 68
    }
  }

  getOutputSize();
69 70 71 72 73

  size_t numInputs = config_.inputs_size();
  inputShape_.resize(numInputs);
  filterShape_.resize(numInputs);
  outputShape_.resize(numInputs);
X
xzl 已提交
74

75 76 77
  std::string convType;
  std::string convGradInputType;
  std::string convGradFilterType;
X
xzl 已提交
78

79 80 81
  for (int i = 0; i < config_.inputs_size(); i++) {
    std::vector<size_t> paddings = {(size_t)paddingY_[i], (size_t)padding_[i]};
    std::vector<size_t> strides = {(size_t)strideY_[i], (size_t)stride_[i]};
X
xzl 已提交
82 83 84 85
    std::vector<size_t> dilations = {(size_t)dilationY_[i],
                                     (size_t)dilation_[i]};

    bool useDilation = ((size_t)dilationY_[i] > 1 || (size_t)dilation_[i] > 1);
86

87 88 89 90 91 92 93
    // Convolution Layer uses the GemmConv function by default.
    convType = "GemmConv";
    convGradInputType = "GemmConvGradInput";
    convGradFilterType = "GemmConvGradFilter";

    // If depth wise convolution and useGpu == true
    if (useGpu_ && isDepthwiseConv(channels_[i], groups_[i]) && !isDeconv_) {
94 95 96
      convType = "DepthwiseConv";
      convGradInputType = "DepthwiseConvGradInput";
      convGradFilterType = "DepthwiseConvGradFilter";
97 98 99 100 101
    }

    // If depth wise convolution and useGpu == false and ARM-NEON
    if (!useGpu_ && isDepthwiseConv(channels_[i], groups_[i]) && !isDeconv_) {
#if defined(__ARM_NEON__) || defined(__ARM_NEON)
H
hedaoyuan 已提交
102 103
      if ((filterSize_[i] == filterSizeY_[i]) &&
          (filterSize_[i] == 3 || filterSize_[i] == 4) &&
X
xzl 已提交
104 105
          (stride_[i] == strideY_[i]) && (stride_[i] == 1 || stride_[i] == 2) &&
          !useDilation) {
H
hedaoyuan 已提交
106 107
        convType = "NeonDepthwiseConv";
      }
108
#endif
X
xzl 已提交
109 110
    }

X
xzl 已提交
111
    if (FLAGS_use_nnpack && !isDeconv_ && !useDilation) {
112 113 114 115 116 117
      createFunction(forward_,
                     "NNPACKConv",
                     FuncConfig()
                         .set("paddings", paddings)
                         .set("strides", strides)
                         .set("groups", (size_t)groups_[i])
H
hedaoyuan 已提交
118
                         .set("algo", std::string("auto")));
119 120
    } else {
      createFunction(forward_,
X
xzl 已提交
121
                     !isDeconv_ ? convType : convGradInputType,
122 123 124
                     FuncConfig()
                         .set("paddings", paddings)
                         .set("strides", strides)
X
xzl 已提交
125
                         .set("dilations", dilations)
126 127 128
                         .set("groups", (size_t)groups_[i]));

      createFunction(backward_,
X
xzl 已提交
129
                     !isDeconv_ ? convGradInputType : convType,
130 131 132
                     FuncConfig()
                         .set("paddings", paddings)
                         .set("strides", strides)
X
xzl 已提交
133
                         .set("dilations", dilations)
134
                         .set("groups", (size_t)groups_[i]));
135

136
      createFunction(backward_,
X
xzl 已提交
137
                     convGradFilterType,
138 139 140
                     FuncConfig()
                         .set("paddings", paddings)
                         .set("strides", strides)
X
xzl 已提交
141
                         .set("dilations", dilations)
142 143
                         .set("groups", (size_t)groups_[i]));
    }
144
  }
Z
zhangjinchao01 已提交
145 146 147
  return true;
}

H
hedaoyuan 已提交
148 149 150 151 152 153
size_t ExpandConvLayer::getOutputSize() {
  CHECK_NE(inputLayers_.size(), 0UL);
  size_t layerSize = ConvBaseLayer::calOutputSize();
  return layerSize;
}

154 155 156 157 158 159
// i is the index of input layers
#define BACKWARD_INPUT(i, inputs, outputs) \
  backward_[2 * i]->calc(inputs, outputs)
#define BACKWARD_FILTER(i, inputs, outputs) \
  backward_[2 * i + 1]->calc(inputs, outputs)

Z
zhangjinchao01 已提交
160 161 162
void ExpandConvLayer::forward(PassType passType) {
  Layer::forward(passType);

163
  size_t batchSize = inputLayers_[0]->getOutputValue()->getHeight();
164
  resetOutput(batchSize, getOutputSize());
Z
zhangjinchao01 已提交
165

166
  // Calculate the shape of the input, output, and filter.
167
  for (size_t i = 0; i < inputLayers_.size(); ++i) {
168 169 170 171 172
    inputShape_[i] = TensorShape({(size_t)batchSize,
                                  (size_t)channels_[i],
                                  (size_t)imgSizeH_[i],
                                  (size_t)imgSizeW_[i]});
    filterShape_[i] =
H
hedaoyuan 已提交
173 174 175 176 177
        TensorShape({(size_t)groups_[i],
                     !isDeconv_ ? (size_t)numFilters_ / groups_[i]
                                : (size_t)channels_[i] / groups_[i],
                     !isDeconv_ ? (size_t)channels_[i] / groups_[i]
                                : (size_t)numFilters_ / groups_[i],
178 179 180 181 182 183
                     (size_t)filterSizeY_[i],
                     (size_t)filterSize_[i]});
    outputShape_[i] = TensorShape({(size_t)batchSize,
                                   (size_t)numFilters_,
                                   (size_t)outputH_[i],
                                   (size_t)outputW_[i]});
Z
zhangjinchao01 已提交
184
  }
185 186 187 188 189 190 191

  // Calculate the output value.
  for (size_t i = 0; i < inputLayers_.size(); ++i) {
    BufferArgs inputs;
    BufferArgs outputs;
    inputs.addArg(*getInputValue(i), inputShape_[i]);
    inputs.addArg(*weights_[i]->getW(), filterShape_[i]);
H
hedaoyuan 已提交
192 193 194
    outputs.addArg(*getOutputValue(),
                   outputShape_[i],
                   !isDeconv_ && i == 0 ? ASSIGN_TO : ADD_TO);
195 196 197 198

    forward_[i]->calc(inputs, outputs);
  }

Z
zhangjinchao01 已提交
199
  /* add the bias-vector */
200
  if (biases_.get()) {
H
hedaoyuan 已提交
201
    output_.value->addBias(*biases_->getW(), 1.0, sharedBiases_);
Z
zhangjinchao01 已提交
202 203 204 205 206 207 208 209 210 211 212
  }

  /* activation */
  forwardActivation();
}

void ExpandConvLayer::backward(const UpdateCallback &callback) {
  backwardActivation();

  MatrixPtr outGrad = getOutputGrad();
  if (biases_ && biases_->getWGrad()) {
H
hedaoyuan 已提交
213
    biases_->getWGrad()->collectBias(*getOutputGrad(), 1, sharedBiases_);
Z
zhangjinchao01 已提交
214 215 216 217
    /* Increasing the number of gradient */
    biases_->getParameterPtr()->incUpdate(callback);
  }

218
  // Calculate the input grad and filter grad.
219
  for (size_t i = 0; i < inputLayers_.size(); ++i) {
220 221 222 223 224 225 226
    if (getInputGrad(i)) {
      BufferArgs inputs;
      BufferArgs outputs;
      inputs.addArg(*getOutputGrad(), outputShape_[i]);
      inputs.addArg(*weights_[i]->getW(), filterShape_[i]);
      outputs.addArg(*getInputGrad(i), inputShape_[i], ADD_TO);
      BACKWARD_INPUT(i, inputs, outputs);
227
    }
228

Z
zhangjinchao01 已提交
229
    if (weights_[i]->getWGrad()) {
230 231 232 233 234 235 236 237 238 239 240 241
      BufferArgs inputs;
      BufferArgs outputs;
      if (!isDeconv_) {
        inputs.addArg(*getOutputGrad(), outputShape_[i]);
        inputs.addArg(*getInputValue(i), inputShape_[i]);
      } else {
        inputs.addArg(*getInputValue(i), inputShape_[i]);
        inputs.addArg(*getOutputGrad(), outputShape_[i]);
      }
      outputs.addArg(*weights_[i]->getWGrad(), filterShape_[i], ADD_TO);
      BACKWARD_FILTER(i, inputs, outputs);

Z
zhangjinchao01 已提交
242 243 244 245 246 247 248
      /* Increasing the number of gradient */
      weights_[i]->getParameterPtr()->incUpdate(callback);
    }
  }
}

}  // namespace paddle