提交 81998868 编写于 作者: X xzl

fuse interface of depthwise to expandconv

上级 77ff97ab
......@@ -21,8 +21,7 @@ bool ConvBaseLayer::init(const LayerMap& layerMap,
const ParameterMap& parameterMap) {
/* Initialize the basic parent class */
Layer::init(layerMap, parameterMap);
isDeconv_ = (config_.type() == "exconv" || config_.type() == "cudnn_conv" ||
config_.type() == "depthwise_conv")
isDeconv_ = (config_.type() == "exconv" || config_.type() == "cudnn_conv")
? false
: true;
......
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "DepthwiseConvLayer.h"
#include "paddle/utils/Logging.h"
#include "paddle/utils/Stat.h"
namespace paddle {
REGISTER_LAYER(depthwise_conv, DepthwiseConvLayer);
bool DepthwiseConvLayer::init(const LayerMap &layerMap,
const ParameterMap &parameterMap) {
/* Initialize the basic convolutional parent class */
ExpandConvBaseLayer::init(layerMap, parameterMap);
size_t numInputs = config_.inputs_size();
inputShape_.resize(numInputs);
filterShape_.resize(numInputs);
outputShape_.resize(numInputs);
for (int i = 0; i < config_.inputs_size(); i++) {
std::vector<size_t> paddings = {(size_t)paddingY_[i], (size_t)padding_[i]};
std::vector<size_t> strides = {(size_t)strideY_[i], (size_t)stride_[i]};
createFunction(forward_,
"DepthwiseConv",
FuncConfig()
.set("paddings", paddings)
.set("strides", strides)
.set("groups", (size_t)groups_[i]));
createFunction(backward_,
"DepthwiseConvGradInput",
FuncConfig()
.set("paddings", paddings)
.set("strides", strides)
.set("groups", (size_t)groups_[i]));
createFunction(backward_,
"DepthwiseConvGradFilter",
FuncConfig()
.set("paddings", paddings)
.set("strides", strides)
.set("groups", (size_t)groups_[i]));
}
return true;
}
} // namespace paddle
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include <vector>
#include "ExpandConvLayer.h"
#include "paddle/math/Matrix.h"
namespace paddle {
/**
* @brief A subclass of convolution layer.
* This layer does the depthwise convolution calculation of mobilenet.
* The config file api is img_depthwise_conv_layer.
*/
class DepthwiseConvLayer : public ExpandConvLayer {
public:
explicit DepthwiseConvLayer(const LayerConfig& config)
: ExpandConvLayer(config) {}
~DepthwiseConvLayer() {}
bool init(const LayerMap& layerMap,
const ParameterMap& parameterMap) override;
};
} // namespace paddle
......@@ -38,10 +38,24 @@ bool ExpandConvLayer::init(const LayerMap &layerMap,
inputShape_.resize(numInputs);
filterShape_.resize(numInputs);
outputShape_.resize(numInputs);
string convType;
string convGradInputType;
string convGradFilterType;
for (int i = 0; i < config_.inputs_size(); i++) {
std::vector<size_t> paddings = {(size_t)paddingY_[i], (size_t)padding_[i]};
std::vector<size_t> strides = {(size_t)strideY_[i], (size_t)stride_[i]};
if (useGpu_ && (size_t)groups_[i] == (size_t)channels_[i] && !isDeconv_) {
convType = "DepthwiseConv" convGradInputType =
"DepthwiseConvGradInput" convGradFilterType =
"DepthwiseConvGradFilter"
} else {
convType = "GemmConv" convGradInputType =
"GemmConvGradInput" convGradFilterType = "GemmConvGradFilter"
}
if (FLAGS_use_nnpack) {
CHECK_EQ(isDeconv_, false);
createFunction(forward_,
......@@ -53,21 +67,21 @@ bool ExpandConvLayer::init(const LayerMap &layerMap,
.set("algo", std::string("auto")));
} else {
createFunction(forward_,
!isDeconv_ ? "GemmConv" : "GemmConvGradInput",
!isDeconv_ ? convType : convGradInputType,
FuncConfig()
.set("paddings", paddings)
.set("strides", strides)
.set("groups", (size_t)groups_[i]));
createFunction(backward_,
!isDeconv_ ? "GemmConvGradInput" : "GemmConv",
!isDeconv_ ? convGradInputType : convType,
FuncConfig()
.set("paddings", paddings)
.set("strides", strides)
.set("groups", (size_t)groups_[i]));
createFunction(backward_,
"GemmConvGradFilter",
convGradFilterType,
FuncConfig()
.set("paddings", paddings)
.set("strides", strides)
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册