operator.cc 26.0 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Q
Qiao Longfei 已提交
2 3 4 5 6 7 8 9 10 11 12 13

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
D
dzhwinter 已提交
14
#include <gflags/gflags.h>
D
dzhwinter 已提交
15
#include <glog/logging.h>
Q
Qiao Longfei 已提交
16

17
#include <algorithm>
D
dzhwinter 已提交
18

Y
Yi Wang 已提交
19 20
#include "paddle/fluid/framework/data_transform.h"
#include "paddle/fluid/framework/executor.h"
21
#include "paddle/fluid/framework/lod_tensor.h"
Y
Yi Wang 已提交
22 23 24
#include "paddle/fluid/framework/operator.h"
#include "paddle/fluid/framework/shape_inference.h"
#include "paddle/fluid/framework/var_type.h"
25
#include "paddle/fluid/platform/profiler.h"
Q
Qiao Longfei 已提交
26

D
dzhwinter 已提交
27
DECLARE_bool(benchmark);
C
chengduoZH 已提交
28 29 30
DEFINE_bool(check_nan_inf, false,
            "Checking whether operator produce NAN/INF or not. It will be "
            "extremely slow so please use this flag wisely.");
D
dzhwinter 已提交
31

Q
Qiao Longfei 已提交
32 33 34
namespace paddle {
namespace framework {

35 36 37 38 39 40
std::vector<std::tuple<platform::Place, LibraryType>> kKernelPriority = {
    std::make_tuple(platform::CUDAPlace(0), LibraryType::kCUDNN),
    std::make_tuple(platform::CUDAPlace(0), LibraryType::kPlain),
    std::make_tuple(platform::CPUPlace(), LibraryType::kMKLDNN),
    std::make_tuple(platform::CPUPlace(), LibraryType::kPlain),
};
D
dzhwinter 已提交
41

Q
qiaolongfei 已提交
42 43 44 45 46 47 48 49 50 51 52
proto::VarType::Type GetDataTypeOfVar(const Variable* var) {
  if (var->IsType<framework::LoDTensor>()) {
    return framework::ToDataType(var->Get<framework::LoDTensor>().type());
  } else if (var->IsType<framework::SelectedRows>()) {
    return framework::ToDataType(
        var->Get<framework::SelectedRows>().value().type());
  } else {
    PADDLE_THROW("Var should be LoDTensor or SelectedRows");
  }
}

53 54
static DDim GetDims(const Scope& scope, const std::string& name,
                    bool get_actual_dim = false) {
55
  Variable* var = scope.FindVar(name);
Q
qiaolongfei 已提交
56 57
  if (var == nullptr) {
    return DDim({-1});
Q
Qiao Longfei 已提交
58 59
  }

M
minqiyang 已提交
60 61
  if (var->IsType<LoDTensor>()) {
    const LoDTensor& tensor = var->Get<LoDTensor>();
M
minqiyang 已提交
62
    if (UNLIKELY(!tensor.IsInitialized())) {
63
      return DDim({-1});
64
    }
M
minqiyang 已提交
65 66 67 68 69 70 71
    return tensor.dims();
  } else if (var->IsType<SelectedRows>()) {
    if (get_actual_dim) {
      return var->Get<SelectedRows>().value().dims();
    } else {
      return var->Get<SelectedRows>().GetCompleteDims();
    }
72 73 74 75 76
  } else {
    return DDim({-1});
  }
}

D
dzhwinter 已提交
77 78 79 80 81
static std::string GetDtype(const Scope& scope, const std::string& name) {
  Variable* var = scope.FindVar(name);
  if (var == nullptr) {
    return "";
  }
82

M
minqiyang 已提交
83 84 85
  if (var->IsType<LoDTensor>()) {
    const LoDTensor& tensor = var->Get<LoDTensor>();
    if (UNLIKELY(!tensor.IsInitialized())) {
86 87
      return "";
    }
M
minqiyang 已提交
88 89 90 91
    return DataTypeToString(ToDataType(tensor.type()));
  } else if (var->IsType<SelectedRows>()) {
    return DataTypeToString(
        ToDataType(var->Get<SelectedRows>().value().type()));
D
dzhwinter 已提交
92 93 94 95 96
  } else {
    return "";
  }
}

97 98 99 100 101 102
static int GetRowSize(const Scope& scope, const std::string& name) {
  Variable* var = scope.FindVar(name);
  if (var == nullptr) {
    return -1;
  }

M
minqiyang 已提交
103 104
  if (var->IsType<SelectedRows>()) {
    return var->Get<SelectedRows>().rows().size();
105 106 107 108 109
  }

  return -1;
}

Q
Qiao Longfei 已提交
110 111 112 113 114 115 116 117
static LoD GetLoD(const Scope& scope, const std::string& name) {
  Variable* var = scope.FindVar(name);
  auto default_lod = LoD({{}});

  if (var == nullptr) {
    return default_lod;
  }

M
minqiyang 已提交
118 119 120
  if (var->IsType<LoDTensor>()) {
    const LoDTensor& tensor = var->Get<LoDTensor>();
    if (UNLIKELY(!tensor.IsInitialized())) {
121 122
      return default_lod;
    }
M
minqiyang 已提交
123
    return tensor.lod();
Q
Qiao Longfei 已提交
124 125 126 127 128
  } else {
    return default_lod;
  }
}

129
void OperatorBase::Run(const Scope& scope, const platform::Place& place) {
130
  VLOG(4) << place << " " << DebugStringEx(&scope);
131 132 133 134 135 136 137 138
  if (platform::is_gpu_place(place)) {
#ifndef PADDLE_WITH_CUDA
    PADDLE_THROW("Cannot run operator on place %s", place);
#else
    auto dev_id = boost::get<platform::CUDAPlace>(place).device;
    platform::SetDeviceId(dev_id);
#endif
  }
Q
qiaolongfei 已提交
139
  platform::DeviceContextPool& pool = platform::DeviceContextPool::Instance();
Q
qiaolongfei 已提交
140
  platform::RecordEvent record_event(Type(), pool.Get(place));
141
  RunImpl(scope, place);
142
  VLOG(3) << place << " " << DebugStringEx(&scope);
143 144
}

145 146 147 148 149 150 151 152
bool OperatorBase::HasInputs(const std::string& name) const {
  if (inputs_.find(name) != inputs_.end()) {
    return true;
  } else {
    return false;
  }
}

153
std::string OperatorBase::Input(const std::string& name) const {
Y
Yu Yang 已提交
154
  auto& ins = Inputs(name);
Y
Yu Yang 已提交
155
  PADDLE_ENFORCE_LE(ins.size(), 1UL,
156 157
                    "Operator %s's input %s should contain only one variable.",
                    type_, name);
Y
Yu Yang 已提交
158
  return ins.empty() ? kEmptyVarName : ins[0];
Y
Yan Chunwei 已提交
159 160
}

Y
Yu Yang 已提交
161 162
const std::vector<std::string>& OperatorBase::Inputs(
    const std::string& name) const {
Y
Yu Yang 已提交
163
  auto it = inputs_.find(name);
164 165
  PADDLE_ENFORCE(it != inputs_.end(), "Operator %s does not have the input %s.",
                 type_, name);
Y
Yu Yang 已提交
166
  return it->second;
Y
Yan Chunwei 已提交
167 168
}

169 170 171 172 173 174 175 176
bool OperatorBase::HasOutputs(const std::string& name) const {
  if (outputs_.find(name) != outputs_.end()) {
    return true;
  } else {
    return false;
  }
}

177
std::string OperatorBase::Output(const std::string& name) const {
Y
Yu Yang 已提交
178
  auto& outs = Outputs(name);
Y
Yu Yang 已提交
179
  PADDLE_ENFORCE_LE(outs.size(), 1UL,
180 181
                    "Operator %s's output %s should contain only one variable.",
                    type_, name);
Y
Yu Yang 已提交
182
  return outs.empty() ? kEmptyVarName : outs[0];
Y
Yan Chunwei 已提交
183 184
}

Y
Yu Yang 已提交
185 186
const std::vector<std::string>& OperatorBase::Outputs(
    const std::string& name) const {
Y
Yu Yang 已提交
187
  auto it = outputs_.find(name);
188 189
  PADDLE_ENFORCE(it != outputs_.end(),
                 "Operator %s does not have an output called %s.", type_, name);
Y
Yu Yang 已提交
190
  return it->second;
Y
Yan Chunwei 已提交
191 192
}

193
std::string OperatorBase::DebugStringEx(const Scope* scope) const {
Q
Qiao Longfei 已提交
194
  std::stringstream ss;
Y
Yu Yang 已提交
195
  ss << "Op(" << type_ << "), inputs:{";
Y
Yu Yang 已提交
196 197
  for (auto it = inputs_.begin(); it != inputs_.end();) {
    auto& input = *it;
Y
Yu Yang 已提交
198 199 200
    ss << input.first << "[";
    for (size_t i = 0; i < input.second.size(); ++i) {
      ss << input.second[i];
201
      if (scope) {
202 203 204 205
        int row_size = GetRowSize(*scope, input.second[i]);
        if (row_size >= 0) {
          ss << "[row_size=" << row_size << "]";
        }
D
dzhwinter 已提交
206 207
        std::string dtype = GetDtype(*scope, input.second[i]);
        ss << ":" << dtype;
208
        ss << "[" << GetDims(*scope, input.second[i], true) << "]";
Q
Qiao Longfei 已提交
209
        ss << "(" << GetLoD(*scope, input.second[i]) << ")";
210
      }
Y
Yu Yang 已提交
211 212 213
      if (i != input.second.size() - 1) {
        ss << ", ";
      }
214
    }
Y
Yu Yang 已提交
215
    ss << "]";
Y
Yu Yang 已提交
216 217
    ++it;
    if (it != inputs_.end()) {
218 219
      ss << ", ";
    }
Q
Qiao Longfei 已提交
220
  }
Y
Yu Yang 已提交
221
  ss << "}, outputs:{";
Y
Yu Yang 已提交
222 223
  for (auto it = outputs_.begin(); it != outputs_.end();) {
    auto& output = *it;
Y
Yu Yang 已提交
224 225 226
    ss << output.first << "[";
    for (size_t i = 0; i < output.second.size(); ++i) {
      ss << output.second[i];
227
      if (scope) {
228 229 230 231
        int row_size = GetRowSize(*scope, output.second[i]);
        if (row_size >= 0) {
          ss << "[row_size=" << row_size << "]";
        }
232
        ss << "[" << GetDims(*scope, output.second[i], true) << "]";
Q
Qiao Longfei 已提交
233
        ss << "(" << GetLoD(*scope, output.second[i]) << ")";
234
      }
Y
Yu Yang 已提交
235 236 237
      if (i != output.second.size() - 1) {
        ss << ", ";
      }
238
    }
Y
Yu Yang 已提交
239
    ss << "]";
Y
Yu Yang 已提交
240 241
    ++it;
    if (it != outputs_.end()) {
242 243
      ss << ", ";
    }
Q
Qiao Longfei 已提交
244
  }
Y
Yu Yang 已提交
245
  ss << "}.";
Q
Qiao Longfei 已提交
246 247 248
  return ss.str();
}

Y
Yu Yang 已提交
249
OperatorBase::OperatorBase(const std::string& type,
Y
Yu Yang 已提交
250 251
                           const VariableNameMap& inputs,
                           const VariableNameMap& outputs,
Y
Yu Yang 已提交
252 253
                           const AttributeMap& attrs)
    : type_(type), inputs_(inputs), outputs_(outputs), attrs_(attrs) {
254 255
  GenerateTemporaryNames();
  CheckAllInputOutputSet();
Y
Yu Yang 已提交
256
}
257

Q
qijun 已提交
258 259
std::vector<std::string> OperatorBase::InputVars() const {
  std::vector<std::string> ret_val;
Y
Yu Yang 已提交
260
  for (auto& o : inputs_) {
Q
qijun 已提交
261 262 263 264 265 266
    ret_val.reserve(ret_val.size() + o.second.size());
    ret_val.insert(ret_val.end(), o.second.begin(), o.second.end());
  }
  return ret_val;
}

Y
Yu Yang 已提交
267 268 269 270 271 272 273 274 275 276
std::vector<std::string> OperatorBase::OutputVars(bool has_intermediate) const {
  std::vector<std::string> ret_val;
  if (has_intermediate) {
    // push all outputs into ret_val
    for (auto& o : outputs_) {
      ret_val.reserve(ret_val.size() + o.second.size());
      ret_val.insert(ret_val.end(), o.second.begin(), o.second.end());
    }
    return ret_val;
  }
Y
Yu Yang 已提交
277
  auto& info = OpInfoMap::Instance().Get(Type());
Y
Yu Yang 已提交
278 279

  // get all OpProto::Var for outputs
Y
Yu Yang 已提交
280
  for (auto& o : info.Proto().outputs()) {
Y
Yu Yang 已提交
281 282 283 284 285 286 287 288 289
    // ignore all intermediate output
    if (o.intermediate()) continue;
    auto out = outputs_.find(o.name());
    if (out != outputs_.end()) {
      ret_val.reserve(ret_val.size() + out->second.size());
      ret_val.insert(ret_val.end(), out->second.begin(), out->second.end());
    }
  }
  return ret_val;
D
dongzhihong 已提交
290 291
}

292 293 294
void OperatorBase::CheckAllInputOutputSet() const {
  auto& info_map = OpInfoMap::Instance();
  auto* op_info = info_map.GetNullable(Type());
Y
Yu Yang 已提交
295
  if (op_info == nullptr || op_info->proto_ == nullptr) return;
296 297

  for (auto& in : op_info->Proto().inputs()) {
298 299 300 301
    if (!in.dispensable()) {
      PADDLE_ENFORCE(inputs_.find(in.name()) != inputs_.end(),
                     "Operator %s's input, %s, is not set", Type(), in.name());
    }
302 303 304
  }

  for (auto& out : op_info->Proto().outputs()) {
305 306 307 308 309
    if (!out.dispensable()) {
      PADDLE_ENFORCE(outputs_.find(out.name()) != outputs_.end(),
                     "Operator %s's output, %s, is not set", Type(),
                     out.name());
    }
310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325
  }
}

void OperatorBase::GenerateTemporaryNames() {
  static std::atomic<size_t> gUniqId(0UL);
  for (auto& output : outputs_) {
    for (auto& output_name : output.second) {
      if (output_name == kTempVarName) {
        output_name += type_;
        output_name += "@";
        output_name += std::to_string(gUniqId.fetch_add(1));
      }
    }
  }
}

326 327 328 329
static bool VarIsTensor(const Variable* var) {
  return var->IsType<LoDTensor>() || var->IsType<SelectedRows>();
}

330
static const Tensor* GetTensorFromVar(Variable* var) {
Q
QI JUN 已提交
331
  if (var->IsType<LoDTensor>()) {
332
    return var->GetMutable<LoDTensor>();
Q
QI JUN 已提交
333
  } else if (var->IsType<SelectedRows>()) {
334
    return var->GetMutable<SelectedRows>()->mutable_value();
Q
QI JUN 已提交
335
  } else {
Y
Yang Yang 已提交
336 337
    PADDLE_THROW("Variable type_id %s, expect LoDTensor/SelectedRows.",
                 var->Type().name());
Q
QI JUN 已提交
338 339 340 341 342
  }
}

static Tensor* GetMutableTensorFromVar(Variable* var) {
  if (var->IsType<LoDTensor>()) {
343
    return var->GetMutable<LoDTensor>();
Q
QI JUN 已提交
344
  } else if (var->IsType<SelectedRows>()) {
345
    return var->GetMutable<SelectedRows>()->mutable_value();
Q
QI JUN 已提交
346
  } else {
Y
Yang Yang 已提交
347 348
    PADDLE_THROW("Variable type_id %s, expect LoDTensor/SelectedRows.",
                 var->Type().name());
Q
QI JUN 已提交
349 350 351
  }
}

352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383
bool ExecutionContext::HasInput(const std::string& name) const {
  if (!op_.HasInputs(name)) {
    return false;
  }
  auto& ins = Inputs(name);
  size_t length = ins.size();
  if (length == 0) {
    return false;
  }
  PADDLE_ENFORCE_EQ(length, 1UL,
                    "Input %s should not have more than one inputs", name);
  auto arg = ins[0];
  auto* var = arg == kEmptyVarName ? nullptr : scope_.FindVar(arg);
  return var != nullptr;
}

bool ExecutionContext::HasOutput(const std::string& name) const {
  if (!op_.HasOutputs(name)) {
    return false;
  }
  auto& outs = Outputs(name);
  size_t length = outs.size();
  if (length == 0) {
    return false;
  }
  PADDLE_ENFORCE_EQ(length, 1UL,
                    "Output %s should not have more than one inputs", name);
  auto arg = outs[0];
  auto* var = arg == kEmptyVarName ? nullptr : scope_.FindVar(arg);
  return var != nullptr;
}

384
template <>
385
const Tensor* ExecutionContext::Input<Tensor>(const std::string& name) const {
386
  auto* var = InputVar(name);
387 388
  return var == nullptr ? nullptr
                        : GetTensorFromVar(const_cast<Variable*>(var));
389 390 391
}

template <>
392
const std::vector<const Tensor*> ExecutionContext::MultiInput<Tensor>(
393 394 395 396
    const std::string& name) const {
  auto names = op().Inputs(name);
  std::vector<const Tensor*> res;
  res.reserve(names.size());
397 398 399 400 401
  std::transform(names.begin(), names.end(), std::back_inserter(res),
                 [&](const std::string& sub_name) {
                   auto var = scope_.FindVar(sub_name);
                   return var == nullptr ? nullptr : GetTensorFromVar(var);
                 });
402 403 404 405
  return res;
}

template <>
406
Tensor* ExecutionContext::Output<Tensor>(const std::string& name) const {
407
  auto var = OutputVar(name);
Q
QI JUN 已提交
408
  return var == nullptr ? nullptr : GetMutableTensorFromVar(var);
409 410 411
}

template <>
412
std::vector<Tensor*> ExecutionContext::MultiOutput<Tensor>(
413 414 415 416
    const std::string& name) const {
  auto names = op().Outputs(name);
  std::vector<Tensor*> res;
  res.reserve(names.size());
417 418
  std::transform(names.begin(), names.end(), std::back_inserter(res),
                 [&](const std::string& sub_name) {
419 420
                   auto var = scope_.FindVar(sub_name);
                   return var == nullptr ? nullptr
Q
QI JUN 已提交
421
                                         : GetMutableTensorFromVar(var);
422
                 });
423 424 425
  return res;
}

Y
Yu Yang 已提交
426 427 428 429 430 431 432 433 434 435 436 437 438 439 440
bool OpSupportGPU(const std::string& op_type) {
  auto& all_kernels = OperatorWithKernel::AllOpKernels();
  auto it = all_kernels.find(op_type);
  if (it == all_kernels.end()) {
    // All control operator must support GPU
    return true;
  }
  for (auto& kern_pair : it->second) {
    if (platform::is_gpu_place(kern_pair.first.place_)) {
      return true;
    }
  }
  return false;
}

441 442 443 444 445 446
class RuntimeInferShapeContext : public InferShapeContext {
 public:
  RuntimeInferShapeContext(const OperatorBase& op, const Scope& scope)
      : op_(op), scope_(scope) {}

  bool HasInput(const std::string& name) const override {
447 448 449
    if (!op_.HasInputs(name)) {
      return false;
    }
450 451 452 453 454
    auto& ins = Inputs(name);
    size_t length = ins.size();
    if (length == 0) {
      return false;
    }
F
fengjiayi 已提交
455 456
    PADDLE_ENFORCE_EQ(length, 1UL,
                      "Input %s should not have more than one inputs", name);
457 458 459 460 461 462
    auto ipt = ins[0];
    auto* var = ipt == kEmptyVarName ? nullptr : scope_.FindVar(ipt);
    return var != nullptr;
  }

  bool HasOutput(const std::string& name) const override {
463 464 465
    if (!op_.HasOutputs(name)) {
      return false;
    }
466 467 468 469 470
    auto& outs = Outputs(name);
    size_t length = outs.size();
    if (length == 0) {
      return false;
    }
F
fengjiayi 已提交
471 472
    PADDLE_ENFORCE_EQ(length, 1UL,
                      "Output %s should not have more than one inputs", name);
473 474 475 476 477 478
    auto ipt = outs[0];
    auto* var = ipt == kEmptyVarName ? nullptr : scope_.FindVar(ipt);
    return var != nullptr;
  }

  bool HasInputs(const std::string& name) const override {
479 480 481
    if (!op_.HasInputs(name)) {
      return false;
    }
482 483 484 485 486 487 488 489 490 491 492 493 494
    auto inputs = op_.Inputs(name);
    if (inputs.empty()) {
      return false;
    }
    for (auto& input : inputs) {
      if (scope_.FindVar(input) == nullptr) {
        return false;
      }
    }
    return true;
  }

  bool HasOutputs(const std::string& name) const override {
495 496 497
    if (!op_.HasOutputs(name)) {
      return false;
    }
498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521
    auto outputs = op_.Outputs(name);
    if (outputs.empty()) {
      return false;
    }
    for (auto& output : outputs) {
      if (scope_.FindVar(output) == nullptr) {
        return false;
      }
    }
    return true;
  }

  AttrReader Attrs() const override { return AttrReader(op_.Attrs()); }

  const std::vector<std::string>& Inputs(
      const std::string& name) const override {
    return op_.Inputs(name);
  }

  const std::vector<std::string>& Outputs(
      const std::string& name) const override {
    return op_.Outputs(name);
  }

Q
Qiao Longfei 已提交
522 523 524 525 526 527 528 529 530 531 532 533
  void ShareLoD(const std::string& in, const std::string& out, size_t i = 0,
                size_t j = 0) const override {
    PADDLE_ENFORCE_LT(i, Inputs(in).size());
    PADDLE_ENFORCE_LT(j, Outputs(out).size());
    Variable* in_var = scope_.FindVar(Inputs(in)[i]);
    Variable* out_var = scope_.FindVar(Outputs(out)[j]);
    if (!in_var->IsType<LoDTensor>()) return;
    PADDLE_ENFORCE(out_var->IsType<LoDTensor>(),
                   "The %d-th output of Output(%s) must be LoDTensor.", j, out);
    auto in_tensor = in_var->Get<LoDTensor>();
    auto* out_tensor = out_var->GetMutable<LoDTensor>();
    out_tensor->set_lod(in_tensor.lod());
D
dzhwinter 已提交
534

M
mozga-intel 已提交
535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553
// TODO(dzhwinter) : reuse ShareLoD in most operators.
// Need to call ShareLayout explicitly in sequence related ops.
// Shall we have a better method to shared info between in/out Tensor?
#ifdef PADDLE_WITH_MKLDNN
    // Fix me: ugly workaround below
    // Correct solution:
    //    set_layout() should NOT be called here (i.e. ShareLoD). Instead,
    //    layout of output tensor should be set "manually" in Compute()
    //    of each OPKernel. The reason layout should NOT be shared between
    //    input and output "automatically" (now by InferShape()->ShareLoD())
    //    is that layout transform may occur after InferShape().
    // Workaround:
    //    Skip set_layout() when input layout is kMKLDNN
    //    This is to avoid kMKLDNN is populated wrongly into a non-MKLDNN
    //    OPKernel. In all MKLDNN OPkernel, set_layout(kMKLDNN) should be called
    //    in Compute()
    if (in_tensor.layout() != DataLayout::kMKLDNN)
#endif
      out_tensor->set_layout(in_tensor.layout());
D
dzhwinter 已提交
554 555 556 557 558 559 560 561 562 563 564 565 566 567
  }

  void ShareLayout(const std::string& in, const std::string& out, size_t i = 0,
                   size_t j = 0) const {
    PADDLE_ENFORCE_LT(i, Inputs(in).size());
    PADDLE_ENFORCE_LT(j, Outputs(out).size());
    Variable* in_var = scope_.FindVar(Inputs(in)[i]);
    Variable* out_var = scope_.FindVar(Outputs(out)[j]);
    if (!in_var->IsType<LoDTensor>()) return;
    PADDLE_ENFORCE(out_var->IsType<LoDTensor>(),
                   "The %d-th output of Output(%s) must be LoDTensor.", j, out);
    auto in_tensor = in_var->Get<LoDTensor>();
    auto* out_tensor = out_var->GetMutable<LoDTensor>();
    out_tensor->set_layout(in_tensor.layout());
Q
Qiao Longfei 已提交
568 569
  }

570 571 572
  bool IsRuntime() const override { return true; }

 protected:
573 574
  DDim GetDim(const std::string& name) const override {
    Variable* var = scope_.FindVar(name);
F
fengjiayi 已提交
575
    PADDLE_ENFORCE_NOT_NULL(var);
576 577 578 579 580
    if (var->IsType<LoDTensor>()) {
      return var->Get<LoDTensor>().dims();
    } else if (var->IsType<SelectedRows>()) {
      return var->Get<SelectedRows>().GetCompleteDims();
    } else {
F
fengjiayi 已提交
581 582 583 584 585 586 587
      PADDLE_THROW(
          "Only LoDTensor/SelectedRows support 'GetDim', but Variable %s's "
          "type_id is %s.",
          name, var->Type().name());
    }
  }

F
fengjiayi 已提交
588
  std::vector<DDim> GetRepeatedDims(const std::string& name) const override {
Y
Yu Yang 已提交
589
    PADDLE_THROW("Only compile time support this method");
590 591 592 593 594 595 596 597 598
  }

  void SetDim(const std::string& name, const DDim& dim) override {
    Variable* var = scope_.FindVar(name);
    if (var->IsType<LoDTensor>()) {
      var->GetMutable<LoDTensor>()->Resize(dim);
    } else if (var->IsType<SelectedRows>()) {
      var->GetMutable<SelectedRows>()->set_height(dim[0]);
    } else {
Y
Yang Yang 已提交
599 600
      PADDLE_THROW("Variable %s type_id %s, expect LoDTensor/SelectedRows.",
                   name, var->Type().name());
601 602 603
    }
  }

F
fengjiayi 已提交
604 605
  void SetRepeatedDims(const std::string& name,
                       const std::vector<DDim>& dims) override {
Y
Yu Yang 已提交
606
    PADDLE_THROW("Only compile time support this method");
F
fengjiayi 已提交
607 608
  }

609
  proto::VarType::Type GetVarType(const std::string& name) const override {
610 611 612 613
    auto* var = scope_.FindVar(name);
    return ToVarType(var->Type());
  }

F
fengjiayi 已提交
614 615 616 617
  InferShapeVarPtr GetVarPtr(const std::string& name) override {
    return scope_.FindVar(name);
  }

618
 private:
619 620 621 622
  const OperatorBase& op_;
  const Scope& scope_;
};

C
chengduoZH 已提交
623 624 625 626 627
static void CheckTensorNANOrInf(const std::string& name,
                                const framework::Tensor& tensor) {
  if (tensor.memory_size() == 0) {
    return;
  }
S
sneaxiy 已提交
628
  if (!IsType<float>(tensor.type()) && !IsType<double>(tensor.type())) {
C
chengduoZH 已提交
629 630 631 632 633 634 635 636
    return;
  }
  PADDLE_ENFORCE(!framework::TensorContainsInf(tensor),
                 "Tensor %s contains Inf", name);
  PADDLE_ENFORCE(!framework::TensorContainsNAN(tensor),
                 "Tensor %s contains NAN", name);
}

637 638
void OperatorWithKernel::RunImpl(const Scope& scope,
                                 const platform::Place& place) const {
639 640
  RuntimeInferShapeContext infer_shape_ctx(*this, scope);
  this->InferShape(&infer_shape_ctx);
Y
Yu Yang 已提交
641
  platform::DeviceContextPool& pool = platform::DeviceContextPool::Instance();
642
  auto* dev_ctx = pool.Get(place);
643

644 645 646 647
  // check if op[type] has kernel registered.
  auto& all_op_kernels = AllOpKernels();
  auto kernels_iter = all_op_kernels.find(type_);
  if (kernels_iter == all_op_kernels.end()) {
Y
Yu Yang 已提交
648 649
    PADDLE_THROW(
        "There are no kernels which are registered in the %s operator.", type_);
650 651
  }

Q
qiaolongfei 已提交
652 653
  OpKernelMap& kernels = kernels_iter->second;

654 655
  // TODO(dzhwinter) : kernel fallback mechanism will be added when all the
  // transform functions are ready.
Q
qiaolongfei 已提交
656

657 658 659 660
  // for (auto& candidate : kKernelPriority) {
  //   Do selection
  // }

Y
yuyang18 已提交
661 662
  auto expected_kernel_key =
      this->GetExpectedKernelType(ExecutionContext(*this, scope, *dev_ctx));
Q
qiaolongfei 已提交
663 664
  VLOG(3) << "expected_kernel_key:" << expected_kernel_key;

665
  auto kernel_iter = kernels.find(expected_kernel_key);
666
#ifdef PADDLE_WITH_MKLDNN
P
Paweł Żelazko 已提交
667
  // workaround for missing MKLDNN kernel when FLAGS_use_mkldnn env var is set
668 669
  if (kernel_iter == kernels.end() &&
      expected_kernel_key.library_type_ == LibraryType::kMKLDNN) {
P
Paweł Żelazko 已提交
670
    VLOG(3) << "missing MKLDNN kernel: fallbacking to PLAIN one";
671 672 673 674 675
    expected_kernel_key.library_type_ = LibraryType::kPlain;
    expected_kernel_key.data_layout_ = DataLayout::kAnyLayout;
    kernel_iter = kernels.find(expected_kernel_key);
  }
#endif
676 677 678 679 680
  if (kernel_iter == kernels.end()) {
    PADDLE_THROW("op %s does not have kernel for %s", type_,
                 KernelTypeToString(expected_kernel_key));
  }

Y
yuyang18 已提交
681 682 683 684
  // do data transformScope &transfer_scope;
  std::vector<std::string> transfered_inplace_vars;
  auto* transfer_scope =
      TryTransferData(scope, expected_kernel_key, &transfered_inplace_vars);
685

Y
yuyang18 已提交
686 687 688 689 690 691
  // exec scope is the scope that kernel actually executed on.
  const Scope& exec_scope =
      (transfer_scope == nullptr ? scope : *transfer_scope);

  if (!(expected_kernel_key.place_ == dev_ctx->GetPlace())) {
    dev_ctx = pool.Get(expected_kernel_key.place_);
692
  }
Q
QI JUN 已提交
693

Y
yuyang18 已提交
694
  kernel_iter->second(ExecutionContext(*this, exec_scope, *dev_ctx));
D
dzhwinter 已提交
695

Y
yuyang18 已提交
696 697 698
  if (!transfered_inplace_vars.empty()) {
    // there is inplace variable has been transfered.
    TransferInplaceVarsBack(scope, transfered_inplace_vars, *transfer_scope);
699 700
  }

D
dzhwinter 已提交
701
  /*For profiling/benchmark only*/
D
dzhwinter 已提交
702
  if (FLAGS_benchmark) {
Y
yuyang18 已提交
703
    dev_ctx->Wait();
D
dzhwinter 已提交
704
  }
C
chengduoZH 已提交
705 706 707

  if (FLAGS_check_nan_inf) {
    for (auto& vname : OutputVars(true)) {
Y
yuyang18 已提交
708
      auto* var = exec_scope.FindVar(vname);
C
chengduoZH 已提交
709 710 711
      if (var == nullptr) continue;
      if (var->IsType<framework::LoDTensor>()) {
        CheckTensorNANOrInf(vname, var->Get<framework::LoDTensor>());
712 713
      } else if (var->IsType<framework::SelectedRows>()) {
        CheckTensorNANOrInf(vname, var->Get<framework::SelectedRows>().value());
C
chengduoZH 已提交
714 715 716
      }
    }
  }
Q
Qiao Longfei 已提交
717
}
Y
yuyang18 已提交
718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768
void OperatorWithKernel::TransferInplaceVarsBack(
    const Scope& scope, const std::vector<std::string>& inplace_vars,
    const Scope& transfer_scope) const {
  for (auto& var_name : inplace_vars) {
    VLOG(3) << "share inplace var " + var_name + " back to it's original scope";
    auto* original_tensor = GetMutableTensorFromVar(scope.FindVar(var_name));
    auto* transformed_tensor =
        GetTensorFromVar(transfer_scope.FindVar(var_name));
    original_tensor->ShareDataWith(*transformed_tensor);
  }
}

Scope* OperatorWithKernel::TryTransferData(
    const Scope& scope, const OpKernelType& expected_kernel_key,
    std::vector<std::string>* transfered_inplace_vars) const {
  Scope* new_scope = nullptr;
  for (auto& var_name_item : Inputs()) {
    for (auto& var_name : var_name_item.second) {
      auto* var = scope.FindVar(var_name);
      // Only tensor can be tranfer to another device.
      if (var == nullptr || !VarIsTensor(var)) {
        continue;
      }

      auto* tensor_in = GetTensorFromVar(var);
      if (!tensor_in->IsInitialized()) {
        continue;
      }

      auto kernel_type_for_var = GetKernelTypeForVar(
          var_name_item.first, *tensor_in, expected_kernel_key);

      if (!NeedTransform(kernel_type_for_var, expected_kernel_key)) {
        continue;
      }

      auto out_var_names = OutputVars(true);
      if (std::find(out_var_names.begin(), out_var_names.end(), var_name) !=
          out_var_names.end()) {
        transfered_inplace_vars->emplace_back(var_name);
      }

      VLOG(3) << "Transform Variable " << var_name << " from "
              << kernel_type_for_var << " to " << expected_kernel_key;

      if (new_scope == nullptr) {
        new_scope = &scope.NewScope();
      }

      auto* trans_var = new_scope->Var(var_name);
      Tensor out;
Y
yuyang18 已提交
769
      TransformData(expected_kernel_key, kernel_type_for_var, *tensor_in, &out);
Y
yuyang18 已提交
770 771 772 773 774 775
      SetTensorToVariable(*var, out, trans_var);
    }
  }

  return new_scope;
}
Q
Qiao Longfei 已提交
776

777
proto::VarType::Type OperatorWithKernel::IndicateDataType(
Y
Yu Yang 已提交
778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794
    const ExecutionContext& ctx) const {
  auto& scope = ctx.scope();
  int data_type = -1;
  for (auto& input : this->inputs_) {
    for (auto& ipt_name : input.second) {
      auto* var = scope.FindVar(ipt_name);
      if (var != nullptr) {
        const Tensor* t = nullptr;
        if (var->IsType<Tensor>()) {
          t = &var->Get<Tensor>();
        } else if (var->IsType<LoDTensor>()) {
          t = &var->Get<LoDTensor>();
        } else if (var->IsType<SelectedRows>()) {
          t = &(var->Get<SelectedRows>().value());
        }
        if (t != nullptr) {
          int tmp = static_cast<int>(ToDataType(t->type()));
795 796 797 798
          PADDLE_ENFORCE(
              tmp == data_type || data_type == -1,
              "DataType of Paddle Op %s must be the same. Get %d != %d", Type(),
              data_type, tmp);
Y
Yu Yang 已提交
799 800 801 802 803 804
          data_type = tmp;
        }
      }
    }
  }
  PADDLE_ENFORCE(data_type != -1, "DataType should be indicated by input");
805
  return static_cast<proto::VarType::Type>(data_type);
Y
Yu Yang 已提交
806
}
807

808 809 810 811 812 813 814 815
OpKernelType OperatorWithKernel::GetExpectedKernelType(
    const ExecutionContext& ctx) const {
  return OpKernelType(IndicateDataType(ctx), ctx.GetPlace());
}

OpKernelType OperatorWithKernel::GetKernelTypeForVar(
    const std::string& var_name, const Tensor& tensor,
    const OpKernelType& expected_kernel_type) const {
M
mozga-intel 已提交
816 817
  return OpKernelType(expected_kernel_type.data_type_, tensor.place(),
                      tensor.layout());
818 819
}

Q
Qiao Longfei 已提交
820
}  // namespace framework
L
liaogang 已提交
821
}  // namespace paddle