rmsprop_op.cc 5.8 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6 7 8 9 10 11 12 13 14

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

Y
Yi Wang 已提交
15
#include "paddle/fluid/operators/rmsprop_op.h"
16 17 18 19 20 21 22 23

namespace paddle {
namespace operators {

class RmspropOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

24
  void InferShape(framework::InferShapeContext *ctx) const override {
25
    PADDLE_ENFORCE(ctx->HasInput("Param"),
K
Kavya Srinet 已提交
26
                   "Input(Param) of RmspropOp should not be null.");
27 28 29 30
    PADDLE_ENFORCE(ctx->HasInput("MeanSquare"),
                   "Input(MeanSquare) of RmspropOp should not be null.");
    PADDLE_ENFORCE(ctx->HasInput("LearningRate"),
                   "Input(LearningRate) of RmspropOp should not be null.");
31
    PADDLE_ENFORCE(ctx->HasInput("Grad"),
K
Kavya Srinet 已提交
32
                   "Input(Grad) of RmspropOp should not be null.");
33
    PADDLE_ENFORCE(ctx->HasInput("Moment"),
K
Kavya Srinet 已提交
34
                   "Input(Moment) of RmspropOp should not be null.");
C
chengduo 已提交
35 36 37 38 39
    PADDLE_ENFORCE(
        ctx->GetInputsVarType("Param").front() ==
            framework::proto::VarType::LOD_TENSOR,
        "The input var's type should be LoDTensor, but the received is %s",
        ctx->Inputs("Param").front(), ctx->GetInputsVarType("Param").front());
40 41 42 43

    PADDLE_ENFORCE(ctx->HasOutput("ParamOut"),
                   "Output(param_out) of RmspropOp should not be null.");
    PADDLE_ENFORCE(ctx->HasOutput("MomentOut"),
44
                   "Output(MomentOut) of RmspropOp should not be null.");
45 46
    PADDLE_ENFORCE(ctx->HasOutput("MeanSquareOut"),
                   "Output(MeanSquareOut) of RmspropOp should not be null.");
47 48 49 50
    if (ctx->Attrs().Get<bool>("centered")) {
      PADDLE_ENFORCE(ctx->HasOutput("MeanGradOut"),
                     "Output(MeanGradOut) of RmspropOp should not be null.");
    }
51 52 53 54 55

    auto param_dim = ctx->GetInputDim("Param");
    PADDLE_ENFORCE_EQ(
        param_dim, ctx->GetInputDim("Grad"),
        "Param and grad input of RmspropOp should have the same dimension.");
56 57 58 59 60 61
    PADDLE_ENFORCE_EQ(param_dim, ctx->GetInputDim("Moment"),
                      "Param and Momentum input of RmspropOp "
                      "should have the same dimension.");
    PADDLE_ENFORCE_EQ(param_dim, ctx->GetInputDim("MeanSquare"),
                      "Param and Momentum input of RmspropOp "
                      "should have the same dimension.");
62

K
Kavya Srinet 已提交
63 64 65 66
    auto lr_dim = ctx->GetInputDim("LearningRate");
    PADDLE_ENFORCE_EQ(framework::product(lr_dim), 1,
                      "Learning Rate should be a scalar.");

67 68
    ctx->SetOutputDim("ParamOut", param_dim);
    ctx->SetOutputDim("MomentOut", param_dim);
69
    ctx->SetOutputDim("MeanSquareOut", param_dim);
70 71 72
    if (ctx->Attrs().Get<bool>("centered")) {
      ctx->SetOutputDim("MeanGradOut", param_dim);
    }
73 74 75 76 77
  }
};

class RmspropOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
Y
Yu Yang 已提交
78
  void Make() override {
79 80
    AddInput("Param",
             "(Tensor, default Tensor<float>) "
K
kexinzhao 已提交
81
             "Input parameter value that has to be updated.");
82 83
    AddInput("MeanSquare",
             "(Tensor, default Tensor<float>)"
K
kexinzhao 已提交
84
             " The mean square value that gets updated.");
85 86 87 88
    AddInput("MeanGrad",
             "(Tensor, default Tensor<float>)"
             " The moving average of gradient")
        .AsDispensable();
89 90
    AddInput("LearningRate",
             "(Tensor, default Tensor<float>) "
K
kexinzhao 已提交
91
             "The learning rate should be a tensor of size 1.");
92 93
    AddInput("Grad",
             "(Tensor, default Tensor<float>) "
K
kexinzhao 已提交
94
             "Input gradient of the parameter.");
95
    AddInput("Moment",
K
kexinzhao 已提交
96
             "(Tensor, default Tensor<float>) The moment that gets updated.");
97

K
kexinzhao 已提交
98 99 100
    AddOutput("ParamOut", "(Tensor) Output updated parameter value.");
    AddOutput("MomentOut", "(Tensor) Output updated moment.");
    AddOutput("MeanSquareOut", "(Tensor) Output Mean squared updated value.");
101 102
    AddOutput("MeanGradOut",
              "(Tensor) Output moving average of gradient updated value.");
103 104 105 106

    AddAttr<float>("epsilon",
                   "(float, default 1e-10) Constant "
                   "for numerical stability.")
107
        .SetDefault(1.0e-10f);
108 109 110
    AddAttr<float>("decay",
                   "(float, default 0.9) "
                   "Discounting factor for coming gradient.")
111
        .SetDefault(0.9f);
K
kexinzhao 已提交
112
    AddAttr<float>("momentum", "(float, default 0.0) Constant value.")
113
        .SetDefault(0.0f);
114 115
    AddAttr<bool>("centered", "(bool, default false) use centered rmsprop.")
        .SetDefault(false);
116
    AddComment(R"DOC(
K
kexinzhao 已提交
117
Rmsprop Optimizer. 
118

K
kexinzhao 已提交
119 120
$$
MeanSquareOut = decay * MeanSquare + (1 - decay) * Grad * Grad \\
121
MomentOut = momentum * Moment +
K
kexinzhao 已提交
122
            \frac{LearningRate * Grad}{\sqrt{MeanSquareOut + epsilon}} \\
123
ParamOut = Param -  MomentOut
K
kexinzhao 已提交
124
$$
125

126 127 128 129 130 131 132 133
if centered is true:

mean_grad = decay * mean_square{t-1} + (1-decay) * gradient
mean_square = decay * mean_square{t-1} + (1-decay) * gradient ** 2
mom = momentum * mom{t-1} + learning_rate * g_t /
    sqrt(mean_square - mean_grad**2 + epsilon)
param -= mom

K
kexinzhao 已提交
134
The original slides that proposed Rmsprop: Slide 29 of
135 136 137 138 139 140 141 142 143 144
http://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf)

)DOC");
  }
};
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
REGISTER_OP_WITHOUT_GRADIENT(rmsprop, ops::RmspropOp, ops::RmspropOpMaker);
Q
QI JUN 已提交
145 146
REGISTER_OP_CPU_KERNEL(
    rmsprop, ops::RmspropOpKernel<paddle::platform::CPUDeviceContext, float>);