rmsprop_op.cc 4.6 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6 7 8 9 10 11 12 13 14

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

Y
Yi Wang 已提交
15
#include "paddle/fluid/operators/rmsprop_op.h"
16 17 18 19 20 21 22 23

namespace paddle {
namespace operators {

class RmspropOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

24
  void InferShape(framework::InferShapeContext *ctx) const override {
25
    PADDLE_ENFORCE(ctx->HasInput("Param"),
K
Kavya Srinet 已提交
26
                   "Input(Param) of RmspropOp should not be null.");
27 28 29 30
    PADDLE_ENFORCE(ctx->HasInput("MeanSquare"),
                   "Input(MeanSquare) of RmspropOp should not be null.");
    PADDLE_ENFORCE(ctx->HasInput("LearningRate"),
                   "Input(LearningRate) of RmspropOp should not be null.");
31
    PADDLE_ENFORCE(ctx->HasInput("Grad"),
K
Kavya Srinet 已提交
32
                   "Input(Grad) of RmspropOp should not be null.");
33
    PADDLE_ENFORCE(ctx->HasInput("Moment"),
K
Kavya Srinet 已提交
34
                   "Input(Moment) of RmspropOp should not be null.");
35 36 37 38

    PADDLE_ENFORCE(ctx->HasOutput("ParamOut"),
                   "Output(param_out) of RmspropOp should not be null.");
    PADDLE_ENFORCE(ctx->HasOutput("MomentOut"),
39 40 41
                   "Output(Momentum_out) of RmspropOp should not be null.");
    PADDLE_ENFORCE(ctx->HasOutput("MeanSquareOut"),
                   "Output(MeanSquareOut) of RmspropOp should not be null.");
42 43 44 45 46

    auto param_dim = ctx->GetInputDim("Param");
    PADDLE_ENFORCE_EQ(
        param_dim, ctx->GetInputDim("Grad"),
        "Param and grad input of RmspropOp should have the same dimension.");
47 48 49 50 51 52
    PADDLE_ENFORCE_EQ(param_dim, ctx->GetInputDim("Moment"),
                      "Param and Momentum input of RmspropOp "
                      "should have the same dimension.");
    PADDLE_ENFORCE_EQ(param_dim, ctx->GetInputDim("MeanSquare"),
                      "Param and Momentum input of RmspropOp "
                      "should have the same dimension.");
53

K
Kavya Srinet 已提交
54 55 56 57
    auto lr_dim = ctx->GetInputDim("LearningRate");
    PADDLE_ENFORCE_EQ(framework::product(lr_dim), 1,
                      "Learning Rate should be a scalar.");

58 59
    ctx->SetOutputDim("ParamOut", param_dim);
    ctx->SetOutputDim("MomentOut", param_dim);
60
    ctx->SetOutputDim("MeanSquareOut", param_dim);
61 62 63 64 65
  }
};

class RmspropOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
Y
Yu Yang 已提交
66
  void Make() override {
67 68
    AddInput("Param",
             "(Tensor, default Tensor<float>) "
K
kexinzhao 已提交
69
             "Input parameter value that has to be updated.");
70 71
    AddInput("MeanSquare",
             "(Tensor, default Tensor<float>)"
K
kexinzhao 已提交
72
             " The mean square value that gets updated.");
73 74
    AddInput("LearningRate",
             "(Tensor, default Tensor<float>) "
K
kexinzhao 已提交
75
             "The learning rate should be a tensor of size 1.");
76 77
    AddInput("Grad",
             "(Tensor, default Tensor<float>) "
K
kexinzhao 已提交
78
             "Input gradient of the parameter.");
79
    AddInput("Moment",
K
kexinzhao 已提交
80
             "(Tensor, default Tensor<float>) The moment that gets updated.");
81

K
kexinzhao 已提交
82 83 84
    AddOutput("ParamOut", "(Tensor) Output updated parameter value.");
    AddOutput("MomentOut", "(Tensor) Output updated moment.");
    AddOutput("MeanSquareOut", "(Tensor) Output Mean squared updated value.");
85 86 87 88

    AddAttr<float>("epsilon",
                   "(float, default 1e-10) Constant "
                   "for numerical stability.")
89
        .SetDefault(1.0e-10f);
90 91 92
    AddAttr<float>("decay",
                   "(float, default 0.9) "
                   "Discounting factor for coming gradient.")
93
        .SetDefault(0.9f);
K
kexinzhao 已提交
94
    AddAttr<float>("momentum", "(float, default 0.0) Constant value.")
95
        .SetDefault(0.0f);
96
    AddComment(R"DOC(
K
kexinzhao 已提交
97
Rmsprop Optimizer. 
98

K
kexinzhao 已提交
99 100
$$
MeanSquareOut = decay * MeanSquare + (1 - decay) * Grad * Grad \\
101
MomentOut = momentum * Moment +
K
kexinzhao 已提交
102
            \frac{LearningRate * Grad}{\sqrt{MeanSquareOut + epsilon}} \\
103
ParamOut = Param -  MomentOut
K
kexinzhao 已提交
104
$$
105

K
kexinzhao 已提交
106
The original slides that proposed Rmsprop: Slide 29 of
107 108 109 110 111 112 113 114 115 116
http://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf)

)DOC");
  }
};
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
REGISTER_OP_WITHOUT_GRADIENT(rmsprop, ops::RmspropOp, ops::RmspropOpMaker);
Q
QI JUN 已提交
117 118
REGISTER_OP_CPU_KERNEL(
    rmsprop, ops::RmspropOpKernel<paddle::platform::CPUDeviceContext, float>);