strided_slice_op.h 24.2 KB
Newer Older
W
wangchaochaohu 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
/* Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once
#include <algorithm>
#include <cstdlib>
#include <utility>
#include <vector>
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/operators/math/math_function.h"
22
#include "paddle/fluid/operators/slice_op.h"
W
wangchaochaohu 已提交
23 24 25
namespace paddle {
namespace operators {

26
static void StridedSliceOutDims(
27 28
    const std::vector<int64_t>& starts, const std::vector<int64_t>& ends,
    const std::vector<int64_t>& strides, const std::vector<int>& axes,
29
    const std::vector<int>& infer_flags, const framework::DDim in_dims,
30
    const std::vector<int>& decrease_axis, int64_t* out_dims_vector,
31
    const size_t size, bool infer_shape) {
32 33 34
  for (int i = 0; i < in_dims.size(); i++) {
    out_dims_vector[i] = in_dims[i];
  }
35
  int64_t stride_index, start_index, end_index;
36 37
  for (size_t i = 0; i < size; i++) {
    int axes_index = axes[i];
38 39 40 41 42 43 44 45 46 47 48 49 50 51
    start_index = starts[i];
    end_index = ends[i];
    stride_index = strides[i];
    bool decrease_axis_affect = false;
    if (start_index == -1 && end_index == 0 && infer_flags[i] == -1) {
      auto ret = std::find(decrease_axis.begin(), decrease_axis.end(), axes[i]);
      if (ret != decrease_axis.end()) {
        decrease_axis_affect = true;
      }
    }
    if (decrease_axis_affect) {
      out_dims_vector[axes_index] = 1;
      continue;
    }
52 53 54 55 56
    if (infer_shape && infer_flags[i] == -1) {
      out_dims_vector[axes_index] = -1;
      continue;
    }

57 58 59
    PADDLE_ENFORCE_NE(stride_index, 0,
                      platform::errors::InvalidArgument(
                          "stride index in StridedSlice operator is 0."));
60 61
    int64_t axis_size = in_dims[axes_index];

62 63 64 65 66 67 68 69
    if (axis_size < 0) {
      continue;
    }

    if (start_index < 0) {
      start_index = start_index + axis_size;
    }
    if (end_index < 0) {
70 71 72
      if (!(end_index == -1 && stride_index < 0)) {  // skip None stop condition
        end_index = end_index + axis_size;
      }
73 74 75 76 77 78 79
    }

    if (stride_index < 0) {
      start_index = start_index + 1;
      end_index = end_index + 1;
    }

80 81 82
    bool neg_dim_condition = ((stride_index < 0 && (start_index < end_index)) ||
                              (stride_index > 0 && (start_index > end_index)));
    PADDLE_ENFORCE_EQ(neg_dim_condition, false,
83 84 85
                      platform::errors::InvalidArgument(
                          "The start index and end index are invalid for their "
                          "corresponding stride."));
86 87 88 89 90 91

    int64_t left =
        std::max(static_cast<int64_t>(0), std::min(start_index, end_index));
    int64_t right = std::min(axis_size, std::max(start_index, end_index));
    int64_t step = std::abs(stride_index);

92 93 94 95 96 97
    auto out_dims_index = (std::abs(right - left) + step - 1) / step;

    out_dims_vector[axes_index] = out_dims_index;
  }
}

98 99 100
static void StridedSliceFunctor(int64_t* starts, int64_t* ends,
                                int64_t* strides, int* axes, int* reverse_axis,
                                const framework::DDim dims,
101 102
                                const std::vector<int>& infer_flags,
                                const std::vector<int>& decrease_axis,
W
wangchaochaohu 已提交
103 104
                                const size_t size) {
  for (size_t axis = 0; axis < size; axis++) {
105
    int64_t axis_size = dims[axes[axis]];
W
wangchaochaohu 已提交
106 107 108 109 110 111
    int axis_index = axis;
    if (axis_size < 0) {
      starts[axis_index] = 0;
      ends[axis_index] = 1;
      strides[axis_index] = 1;
    }
112 113 114 115 116 117 118 119 120
    bool decrease_axis_affect = false;
    if (starts[axis_index] == -1 && ends[axis_index] == 0 &&
        infer_flags[axis_index] == -1) {
      auto ret = std::find(decrease_axis.begin(), decrease_axis.end(),
                           axes[axis_index]);
      if (ret != decrease_axis.end()) {
        decrease_axis_affect = true;
      }
    }
W
wangchaochaohu 已提交
121 122 123
    // stride must not be zero
    if (starts[axis_index] < 0) {
      starts[axis_index] = starts[axis_index] + axis_size;
124
      starts[axis_index] = std::max<int64_t>(starts[axis_index], 0);
W
wangchaochaohu 已提交
125 126
    }
    if (ends[axis_index] < 0) {
127 128 129
      if (!(ends[axis_index] == -1 &&
            strides[axis_index] < 0)) {  // skip None stop condition
        ends[axis_index] = ends[axis_index] + axis_size;
130 131 132
        if (ends[axis_index] < 0) {
          ends[axis_index] = 0;
        }
133
      }
W
wangchaochaohu 已提交
134
    }
135 136 137 138 139 140 141
    if (decrease_axis_affect) {
      if (strides[axis_index] < 0) {
        ends[axis_index] = starts[axis_index] - 1;
      } else {
        ends[axis_index] = starts[axis_index] + 1;
      }
    }
142

W
wangchaochaohu 已提交
143 144 145 146 147
    if (strides[axis_index] < 0) {
      reverse_axis[axis_index] = 1;
      strides[axis_index] = -strides[axis_index];
      if (starts[axis_index] > ends[axis_index]) {
        // swap the reverse
148 149
        auto end_dim = axis_size - 1 < starts[axis_index] ? axis_size - 1
                                                          : starts[axis_index];
150 151 152 153 154
        auto offset = (end_dim - ends[axis_index]) % strides[axis_index];
        offset = offset == 0 ? strides[axis_index] : offset;

        starts[axis_index] = starts[axis_index] + offset;
        ends[axis_index] = ends[axis_index] + offset;
W
wangchaochaohu 已提交
155 156 157 158 159 160 161 162 163 164 165 166 167
      }
      std::swap(starts[axis_index], ends[axis_index]);
    } else {
      reverse_axis[axis_index] = 0;
      strides[axis_index] = strides[axis_index];
    }
  }
}

template <typename DeviceContext, typename T>
class StridedSliceKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
168 169 170 171 172
    const Variable* input_var = ctx.InputVar("Input");
    bool is_tensor_array = input_var->IsType<LoDTensorArray>();
    int rank = is_tensor_array
                   ? 1
                   : ctx.Input<framework::Tensor>("Input")->dims().size();
W
wangchaochaohu 已提交
173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199
    switch (rank) {
      case 1:
        StridedSliceCompute<1>(ctx);
        break;
      case 2:
        StridedSliceCompute<2>(ctx);
        break;
      case 3:
        StridedSliceCompute<3>(ctx);
        break;
      case 4:
        StridedSliceCompute<4>(ctx);
        break;
      case 5:
        StridedSliceCompute<5>(ctx);
        break;
      case 6:
        StridedSliceCompute<6>(ctx);
        break;
    }
  }

 private:
  template <size_t D>
  void StridedSliceCompute(const framework::ExecutionContext& context) const {
    auto& place =
        *context.template device_context<DeviceContext>().eigen_device();
200 201 202 203 204 205 206 207 208 209 210

    framework::DDim in_dims;
    auto* input_var = context.InputVar("Input");

    bool is_input_var_array = input_var->IsType<LoDTensorArray>();
    if (is_input_var_array) {
      const int64_t size = input_var->Get<framework::LoDTensorArray>().size();
      in_dims = framework::make_ddim({size});
    } else {
      in_dims = context.Input<framework::Tensor>("Input")->dims();
    }
W
wangchaochaohu 已提交
211

212 213 214 215 216 217 218 219
    auto starts_int = context.Attr<std::vector<int>>("starts");
    auto ends_int = context.Attr<std::vector<int>>("ends");
    auto strides_int = context.Attr<std::vector<int>>("strides");

    std::vector<int64_t> starts(starts_int.begin(), starts_int.end());
    std::vector<int64_t> ends(ends_int.begin(), ends_int.end());
    std::vector<int64_t> strides(strides_int.begin(), strides_int.end());

W
wangchaochaohu 已提交
220
    auto axes = context.Attr<std::vector<int>>("axes");
221
    auto infer_flags = context.Attr<std::vector<int>>("infer_flags");
222
    auto decrease_axis = context.Attr<std::vector<int>>("decrease_axis");
W
wangchaochaohu 已提交
223 224 225 226 227 228

    auto starts_indices = Eigen::DSizes<Eigen::DenseIndex, D>();
    auto ends_indices = Eigen::DSizes<Eigen::DenseIndex, D>();
    auto strides_indices = Eigen::DSizes<Eigen::DenseIndex, D>();
    auto reverse_axis = Eigen::array<bool, D>();

229 230 231 232 233 234 235 236
    auto list_new_ends_tensor =
        context.MultiInput<framework::Tensor>("EndsTensorList");
    auto list_new_starts_tensor =
        context.MultiInput<framework::Tensor>("StartsTensorList");
    auto list_new_strides_tensor =
        context.MultiInput<framework::Tensor>("StridesTensorList");

    if (list_new_starts_tensor.size() > 0) {
237
      starts = GetDataFromTensorList<int64_t>(list_new_starts_tensor);
238 239
    } else if (context.HasInput("StartsTensor")) {
      auto* starts_tensor = context.Input<framework::Tensor>("StartsTensor");
240
      starts = GetDataFromTensor<int64_t>(starts_tensor);
241 242 243
    }

    if (list_new_ends_tensor.size() > 0) {
244
      ends = GetDataFromTensorList<int64_t>(list_new_ends_tensor);
245 246
    } else if (context.HasInput("EndsTensor")) {
      auto* ends_tensor = context.Input<framework::Tensor>("EndsTensor");
247
      ends = GetDataFromTensor<int64_t>(ends_tensor);
248 249 250
    }

    if (list_new_strides_tensor.size() > 0) {
251
      strides = GetDataFromTensorList<int64_t>(list_new_strides_tensor);
252 253
    } else if (context.HasInput("StridesTensor")) {
      auto* strides_tensor = context.Input<framework::Tensor>("StridesTensor");
254
      strides = GetDataFromTensor<int64_t>(strides_tensor);
255 256
    }

257
    std::vector<int64_t> out_dims_vector(in_dims.size(), -1);
258
    StridedSliceOutDims(starts, ends, strides, axes, infer_flags, in_dims,
259 260
                        decrease_axis, out_dims_vector.data(), axes.size(),
                        false);
261 262
    framework::DDim out_dims(framework::make_ddim(out_dims_vector));

W
wangchaochaohu 已提交
263 264
    std::vector<int> reverse_vector(starts.size(), 0);
    StridedSliceFunctor(starts.data(), ends.data(), strides.data(), axes.data(),
265 266
                        reverse_vector.data(), in_dims, infer_flags,
                        decrease_axis, starts.size());
W
wangchaochaohu 已提交
267 268 269 270 271

    for (size_t axis = 0; axis < D; axis++) {
      starts_indices[axis] = 0;
      ends_indices[axis] = out_dims[axis];
      strides_indices[axis] = 1;
272
      reverse_axis[axis] = false;
W
wangchaochaohu 已提交
273 274 275 276 277 278 279 280 281
    }
    for (size_t axis = 0; axis < axes.size(); axis++) {
      int axis_index = axes[axis];
      starts_indices[axis_index] = starts[axis];
      ends_indices[axis_index] = ends[axis];
      strides_indices[axis_index] = strides[axis];
      reverse_axis[axis_index] = (reverse_vector[axis] == 1) ? true : false;
    }

282 283
    auto out_dims_origin = out_dims;
    if (decrease_axis.size() > 0) {
284
      std::vector<int64_t> new_out_shape;
285
      for (size_t i = 0; i < decrease_axis.size(); ++i) {
286 287 288 289 290
        PADDLE_ENFORCE_EQ(
            out_dims[decrease_axis[i]], 1,
            platform::errors::InvalidArgument(
                "the size of decrease dimension should be 1, but received %d.",
                out_dims[decrease_axis[i]]));
291 292 293 294 295 296 297 298 299 300 301 302 303 304
        out_dims_origin[decrease_axis[i]] = 0;
      }

      for (int i = 0; i < out_dims_origin.size(); ++i) {
        if (out_dims_origin[i] != 0) {
          new_out_shape.push_back(out_dims_origin[i]);
        }
      }
      if (new_out_shape.size() == 0) {
        new_out_shape.push_back(1);
      }
      out_dims_origin = framework::make_ddim(new_out_shape);
    }

305 306 307 308 309 310 311 312
    bool need_reverse = false;
    for (size_t axis = 0; axis < axes.size(); axis++) {
      if (reverse_vector[axis] == 1) {
        need_reverse = true;
        break;
      }
    }

313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374
    if (is_input_var_array) {
      PADDLE_ENFORCE_EQ(
          starts_indices.size(), 1,
          platform::errors::InvalidArgument(
              "When the input of 'strided_slice_op' is `TensorArray`, the "
              "dimension of start index  should be 1, but received %d.",
              starts_indices.size()));

      PADDLE_ENFORCE_EQ(
          ends_indices.size(), 1,
          platform::errors::InvalidArgument(
              "When the input of 'strided_slice_op' is `TensorArray`, the "
              "dimension of end index should be 1, but received %d.",
              ends_indices.size()));

      PADDLE_ENFORCE_EQ(
          strides_indices.size(), 1,
          platform::errors::InvalidArgument(
              "When the input of 'strided_slice_op' is `TensorArray`, the "
              "dimension of stride should be 1, but received %d.",
              strides_indices.size()));

      auto* output_var = context.OutputVar("Out");

      PADDLE_ENFORCE_EQ(
          output_var->IsType<LoDTensorArray>(), true,
          platform::errors::InvalidArgument(
              "When the input of `strided_slice_op` is `TensorArray`. The "
              "output is excepted `TensorArray` , but received %s.",
              framework::ToTypeName(output_var->Type())));

      PADDLE_ENFORCE_EQ(
          out_dims_origin.size(), 1,
          platform::errors::InvalidArgument(
              "When the input of 'strided_slice_op' is `TensorArray`, the "
              "dimension of Output should be 1, but received %d",
              out_dims_origin.size()));

      auto& in_array = input_var->Get<framework::LoDTensorArray>();

      auto* out_array = context.Output<framework::LoDTensorArray>("Out");

      out_array->resize(out_dims_origin[0]);
      size_t const in_array_size = in_array.size();
      for (size_t i = 0; i < out_array->size(); i++) {
        size_t in_offset =
            (starts_indices[0] % in_array_size) + i * strides_indices[0];

        int64_t out_offset = i;
        if (need_reverse) {
          out_offset = out_array->size() - i - 1;
        }

        auto& in_tensor = in_array.at(in_offset);
        PADDLE_ENFORCE_GT(
            in_tensor.memory_size(), 0,
            platform::errors::PreconditionNotMet(
                "The input LoDTensorArray Input[%d] holds no memory.",
                in_offset));
        auto* out_tensor = &out_array->at(out_offset);

        out_tensor->set_lod(in_tensor.lod());
375 376
        paddle::framework::TensorCopy(in_tensor, context.GetPlace(),
                                      out_tensor);
377 378
      }

379
    } else {
380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400
      auto in = context.Input<framework::Tensor>("Input");
      auto out = context.Output<framework::Tensor>("Out");
      out->Resize(out_dims);
      out->mutable_data<T>(context.GetPlace());
      auto in_t = framework::EigenTensor<T, D, Eigen::RowMajor,
                                         Eigen::DenseIndex>::From(*in);
      auto out_t =
          framework::EigenTensor<T, D, Eigen::RowMajor,
                                 Eigen::DenseIndex>::From(*out, out_dims);
      if (need_reverse) {
        framework::Tensor tmp;
        tmp.mutable_data<T>(out_dims, context.GetPlace());
        auto tmp_t = framework::EigenTensor<T, D, Eigen::RowMajor,
                                            Eigen::DenseIndex>::From(tmp);
        tmp_t.device(place) =
            in_t.stridedSlice(starts_indices, ends_indices, strides_indices);
        out_t.device(place) = tmp_t.reverse(reverse_axis);
      } else {
        out_t.device(place) =
            in_t.stridedSlice(starts_indices, ends_indices, strides_indices);
      }
401

402 403 404
      if (decrease_axis.size() > 0) {
        out->Resize(out_dims_origin);
      }
405
    }
W
wangchaochaohu 已提交
406 407 408 409 410 411 412
  }
};

template <typename DeviceContext, typename T>
class StridedSliceGradKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
413 414 415 416 417
    const Variable* input_var = ctx.InputVar("Input");
    bool is_tensor_array = input_var->IsType<LoDTensorArray>();
    int rank = is_tensor_array
                   ? 1
                   : ctx.Input<framework::Tensor>("Input")->dims().size();
W
wangchaochaohu 已提交
418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447
    switch (rank) {
      case 1:
        StridedSliceGradCompute<1>(ctx);
        break;
      case 2:
        StridedSliceGradCompute<2>(ctx);
        break;
      case 3:
        StridedSliceGradCompute<3>(ctx);
        break;
      case 4:
        StridedSliceGradCompute<4>(ctx);
        break;
      case 5:
        StridedSliceGradCompute<5>(ctx);
        break;
      case 6:
        StridedSliceGradCompute<6>(ctx);
        break;
    }
  }

 private:
  template <size_t D>
  void StridedSliceGradCompute(
      const framework::ExecutionContext& context) const {
    auto& place =
        *context.template device_context<DeviceContext>().eigen_device();

    auto& dev_ctx = context.template device_context<DeviceContext>();
448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466

    framework::DDim out_dims;
    auto* out_var = context.OutputVar(framework::GradVarName("Input"));
    bool is_out_var_array = out_var->IsType<LoDTensorArray>();
    if (is_out_var_array) {
      // Note(weixin):Since the shape of `framework::GradVarName("Input")` of
      // StridedSliceGrad cannot be calculated by
      // `framework::GradVarName("Output")`, the dim of "Input" is used to
      // calculate the output shape. when set it to inplace OP, there may be
      // some problems.
      const int64_t size =
          context.Input<framework::LoDTensorArray>("Input")->size();

      out_dims = framework::make_ddim({size});
    } else {
      out_dims =
          context.Output<framework::Tensor>(framework::GradVarName("Input"))
              ->dims();
    }
467 468 469 470 471 472 473 474 475

    auto starts_int = context.Attr<std::vector<int>>("starts");
    auto ends_int = context.Attr<std::vector<int>>("ends");
    auto strides_int = context.Attr<std::vector<int>>("strides");

    std::vector<int64_t> starts(starts_int.begin(), starts_int.end());
    std::vector<int64_t> ends(ends_int.begin(), ends_int.end());
    std::vector<int64_t> strides(strides_int.begin(), strides_int.end());

W
wangchaochaohu 已提交
476
    auto axes = context.Attr<std::vector<int>>("axes");
477 478
    auto infer_flags = context.Attr<std::vector<int>>("infer_flags");
    auto decrease_axis = context.Attr<std::vector<int>>("decrease_axis");
W
wangchaochaohu 已提交
479

480 481 482 483 484 485 486 487
    auto list_new_ends_tensor =
        context.MultiInput<framework::Tensor>("EndsTensorList");
    auto list_new_starts_tensor =
        context.MultiInput<framework::Tensor>("StartsTensorList");
    auto list_new_strides_tensor =
        context.MultiInput<framework::Tensor>("StridesTensorList");

    if (list_new_starts_tensor.size() > 0) {
488
      starts = GetDataFromTensorList<int64_t>(list_new_starts_tensor);
489 490
    } else if (context.HasInput("StartsTensor")) {
      auto* starts_tensor = context.Input<framework::Tensor>("StartsTensor");
491
      starts = GetDataFromTensor<int64_t>(starts_tensor);
492 493 494
    }

    if (list_new_ends_tensor.size() > 0) {
495
      ends = GetDataFromTensorList<int64_t>(list_new_ends_tensor);
496 497
    } else if (context.HasInput("EndsTensor")) {
      auto* ends_tensor = context.Input<framework::Tensor>("EndsTensor");
498
      ends = GetDataFromTensor<int64_t>(ends_tensor);
499 500 501
    }

    if (list_new_strides_tensor.size() > 0) {
502
      strides = GetDataFromTensorList<int64_t>(list_new_strides_tensor);
503 504
    } else if (context.HasInput("StridesTensor")) {
      auto* strides_tensor = context.Input<framework::Tensor>("StridesTensor");
505
      strides = GetDataFromTensor<int64_t>(strides_tensor);
506 507
    }

W
wangchaochaohu 已提交
508 509 510 511 512 513 514 515
    auto starts_indices = Eigen::DSizes<Eigen::DenseIndex, D>();
    auto ends_indices = Eigen::DSizes<Eigen::DenseIndex, D>();
    auto strides_indices = Eigen::DSizes<Eigen::DenseIndex, D>();

    auto reverse_axis = Eigen::array<bool, D>();
    std::vector<int> reverse_vector(starts.size(), 0);

    StridedSliceFunctor(starts.data(), ends.data(), strides.data(), axes.data(),
516 517
                        reverse_vector.data(), out_dims, infer_flags,
                        decrease_axis, starts.size());
W
wangchaochaohu 已提交
518 519 520 521 522 523 524 525 526 527 528 529 530 531

    for (size_t axis = 0; axis < D; axis++) {
      starts_indices[axis] = 0;
      ends_indices[axis] = out_dims[axis];
      strides_indices[axis] = 1;
    }
    for (size_t axis = 0; axis < axes.size(); axis++) {
      int axis_index = axes[axis];
      starts_indices[axis_index] = starts[axis];
      ends_indices[axis_index] = ends[axis];
      strides_indices[axis_index] = strides[axis];
      reverse_axis[axis_index] = (reverse_vector[axis] == 1) ? true : false;
    }

532 533 534 535 536 537 538 539
    bool need_reverse = false;
    for (size_t axis = 0; axis < axes.size(); axis++) {
      if (reverse_vector[axis] == 1) {
        need_reverse = true;
        break;
      }
    }

540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607
    if (is_out_var_array) {
      PADDLE_ENFORCE_EQ(
          starts_indices.size(), 1,
          platform::errors::InvalidArgument(
              "When the input of 'strided_slice_grad_op' is `TensorArray`, the "
              "dimension of start index  should be 1, but received %d.",
              starts_indices.size()));
      PADDLE_ENFORCE_EQ(
          ends_indices.size(), 1,
          platform::errors::InvalidArgument(
              "When the input of 'strided_slice_op' is `TensorArray`, the "
              "dimension of end index should be 1, but received %d.",
              ends_indices.size()));
      PADDLE_ENFORCE_EQ(
          strides_indices.size(), 1,
          platform::errors::InvalidArgument(
              "When the input of 'strided_slice_grad_op' is `TensorArray`, the "
              "dimension of stride should be 1, but received %d.",
              strides_indices.size()));

      auto* d_input_var = context.InputVar(framework::GradVarName("Out"));

      PADDLE_ENFORCE_EQ(
          d_input_var->IsType<LoDTensorArray>(), true,
          platform::errors::InvalidArgument(
              "When the output of `strided_slice_grad_op` is "
              "`TensorArray`, the input is excepted `TensorArray` , "
              "but received %s.",
              framework::ToTypeName(d_input_var->Type())));

      PADDLE_ENFORCE_EQ(
          out_dims.size(), 1,
          platform::errors::InvalidArgument(
              "When the output of `strided_slice_grad_op` is `TensorArray`, "
              "the dimension of output should be 1, but received %d.",
              out_dims.size()));
      auto& d_in_array = d_input_var->Get<framework::LoDTensorArray>();

      auto* d_out_array = context.Output<framework::LoDTensorArray>(
          framework::GradVarName("Input"));

      d_out_array->resize(out_dims[0]);
      auto const d_out_array_size = d_out_array->size();
      auto* input_tensor_array =
          context.Input<framework::LoDTensorArray>("Input");

      for (size_t j = 0; j < d_out_array_size; j++) {
        auto& dim = input_tensor_array->at(j).dims();
        auto* d_out_tensor = &d_out_array->at(j);

        int64_t sub = j - starts_indices[0];

        int64_t in_offset = sub / strides_indices[0];

        if (need_reverse) {
          in_offset = d_in_array.size() - in_offset - 1;
        }

        if ((sub % strides_indices[0] == 0) && (0 <= in_offset) &&
            (static_cast<size_t>(in_offset) < d_in_array.size())) {
          auto& in_tensor = d_in_array.at(in_offset);
          PADDLE_ENFORCE_GT(
              in_tensor.memory_size(), 0,
              platform::errors::PreconditionNotMet(
                  "The input LoDTensorArray Input[%d] holds no memory.",
                  in_offset));

          d_out_tensor->set_lod(in_tensor.lod());
608 609
          paddle::framework::TensorCopy(in_tensor, context.GetPlace(),
                                        d_out_tensor);
610 611 612 613 614 615 616 617 618 619 620 621 622

        } else {
          d_out_tensor->Resize(dim);

          if (!d_out_tensor->IsInitialized()) {
            d_out_tensor->mutable_data<T>(context.GetPlace());
          }

          math::SetConstant<DeviceContext, T> set_zero;
          set_zero(dev_ctx, d_out_tensor, static_cast<T>(0));
        }
      }

623
    } else {
624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654
      auto* d_input =
          context.Input<framework::Tensor>(framework::GradVarName("Out"));
      auto* d_out =
          context.Output<framework::Tensor>(framework::GradVarName("Input"));

      d_out->mutable_data<T>(context.GetPlace());

      math::SetConstant<DeviceContext, T> set_zero;
      set_zero(dev_ctx, d_out, static_cast<T>(0));

      auto in_dims = d_input->dims();

      auto in_t = framework::EigenTensor<T, D, Eigen::RowMajor,
                                         Eigen::DenseIndex>::From(*d_input);
      auto out_t =
          framework::EigenTensor<T, D, Eigen::RowMajor,
                                 Eigen::DenseIndex>::From(*d_out, out_dims);
      if (need_reverse) {
        framework::Tensor reverse_input;
        reverse_input.mutable_data<T>(in_dims, context.GetPlace());
        auto reverse_in_t =
            framework::EigenTensor<T, D, Eigen::RowMajor,
                                   Eigen::DenseIndex>::From(reverse_input);

        reverse_in_t.device(place) = in_t.reverse(reverse_axis);
        out_t.stridedSlice(starts_indices, ends_indices, strides_indices)
            .device(place) = reverse_in_t;
      } else {
        out_t.stridedSlice(starts_indices, ends_indices, strides_indices)
            .device(place) = in_t;
      }
655
    }
W
wangchaochaohu 已提交
656 657 658 659
  }
};
}  // namespace operators
}  // namespace paddle