strided_slice_op.h 16.7 KB
Newer Older
W
wangchaochaohu 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
/* Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once
#include <algorithm>
#include <cstdlib>
#include <utility>
#include <vector>
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/operators/math/math_function.h"
22
#include "paddle/fluid/operators/slice_op.h"
W
wangchaochaohu 已提交
23 24 25
namespace paddle {
namespace operators {

26
static void StridedSliceOutDims(
27 28
    const std::vector<int64_t>& starts, const std::vector<int64_t>& ends,
    const std::vector<int64_t>& strides, const std::vector<int>& axes,
29
    const std::vector<int>& infer_flags, const framework::DDim in_dims,
30
    const std::vector<int>& decrease_axis, int64_t* out_dims_vector,
31
    const size_t size, bool infer_shape) {
32 33 34
  for (int i = 0; i < in_dims.size(); i++) {
    out_dims_vector[i] = in_dims[i];
  }
35
  int64_t stride_index, start_index, end_index;
36 37
  for (size_t i = 0; i < size; i++) {
    int axes_index = axes[i];
38 39 40 41 42 43 44 45 46 47 48 49 50 51
    start_index = starts[i];
    end_index = ends[i];
    stride_index = strides[i];
    bool decrease_axis_affect = false;
    if (start_index == -1 && end_index == 0 && infer_flags[i] == -1) {
      auto ret = std::find(decrease_axis.begin(), decrease_axis.end(), axes[i]);
      if (ret != decrease_axis.end()) {
        decrease_axis_affect = true;
      }
    }
    if (decrease_axis_affect) {
      out_dims_vector[axes_index] = 1;
      continue;
    }
52 53 54 55 56
    if (infer_shape && infer_flags[i] == -1) {
      out_dims_vector[axes_index] = -1;
      continue;
    }

57 58 59
    PADDLE_ENFORCE_NE(stride_index, 0,
                      platform::errors::InvalidArgument(
                          "stride index in StridedSlice operator is 0."));
60 61
    int64_t axis_size = in_dims[axes_index];

62 63 64 65 66 67 68 69
    if (axis_size < 0) {
      continue;
    }

    if (start_index < 0) {
      start_index = start_index + axis_size;
    }
    if (end_index < 0) {
70 71 72
      if (!(end_index == -1 && stride_index < 0)) {  // skip None stop condition
        end_index = end_index + axis_size;
      }
73 74 75 76 77 78 79 80 81 82 83
    }

    if (stride_index < 0) {
      start_index = start_index + 1;
      end_index = end_index + 1;
    }

    bool zero_dim_condition =
        ((stride_index < 0 && (start_index <= end_index)) ||
         (stride_index > 0 && (start_index >= end_index)));
    PADDLE_ENFORCE_EQ(zero_dim_condition, false,
84 85 86
                      platform::errors::InvalidArgument(
                          "The start index and end index are invalid for their "
                          "corresponding stride."));
87 88 89 90 91 92

    int64_t left =
        std::max(static_cast<int64_t>(0), std::min(start_index, end_index));
    int64_t right = std::min(axis_size, std::max(start_index, end_index));
    int64_t step = std::abs(stride_index);

93 94 95 96 97 98
    auto out_dims_index = (std::abs(right - left) + step - 1) / step;

    out_dims_vector[axes_index] = out_dims_index;
  }
}

99 100 101
static void StridedSliceFunctor(int64_t* starts, int64_t* ends,
                                int64_t* strides, int* axes, int* reverse_axis,
                                const framework::DDim dims,
102 103
                                const std::vector<int>& infer_flags,
                                const std::vector<int>& decrease_axis,
W
wangchaochaohu 已提交
104 105
                                const size_t size) {
  for (size_t axis = 0; axis < size; axis++) {
106
    int64_t axis_size = dims[axes[axis]];
W
wangchaochaohu 已提交
107 108 109 110 111 112
    int axis_index = axis;
    if (axis_size < 0) {
      starts[axis_index] = 0;
      ends[axis_index] = 1;
      strides[axis_index] = 1;
    }
113 114 115 116 117 118 119 120 121
    bool decrease_axis_affect = false;
    if (starts[axis_index] == -1 && ends[axis_index] == 0 &&
        infer_flags[axis_index] == -1) {
      auto ret = std::find(decrease_axis.begin(), decrease_axis.end(),
                           axes[axis_index]);
      if (ret != decrease_axis.end()) {
        decrease_axis_affect = true;
      }
    }
W
wangchaochaohu 已提交
122 123 124 125 126
    // stride must not be zero
    if (starts[axis_index] < 0) {
      starts[axis_index] = starts[axis_index] + axis_size;
    }
    if (ends[axis_index] < 0) {
127 128 129 130
      if (!(ends[axis_index] == -1 &&
            strides[axis_index] < 0)) {  // skip None stop condition
        ends[axis_index] = ends[axis_index] + axis_size;
      }
W
wangchaochaohu 已提交
131
    }
132 133 134 135 136 137 138
    if (decrease_axis_affect) {
      if (strides[axis_index] < 0) {
        ends[axis_index] = starts[axis_index] - 1;
      } else {
        ends[axis_index] = starts[axis_index] + 1;
      }
    }
W
wangchaochaohu 已提交
139 140 141 142 143
    if (strides[axis_index] < 0) {
      reverse_axis[axis_index] = 1;
      strides[axis_index] = -strides[axis_index];
      if (starts[axis_index] > ends[axis_index]) {
        // swap the reverse
144 145 146 147 148 149 150 151
        auto end_dim = dims[axis_index] - 1 < starts[axis_index]
                           ? dims[axis_index] - 1
                           : starts[axis_index];
        auto offset = (end_dim - ends[axis_index]) % strides[axis_index];
        offset = offset == 0 ? strides[axis_index] : offset;

        starts[axis_index] = starts[axis_index] + offset;
        ends[axis_index] = ends[axis_index] + offset;
W
wangchaochaohu 已提交
152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196
      }
      std::swap(starts[axis_index], ends[axis_index]);
    } else {
      reverse_axis[axis_index] = 0;
      strides[axis_index] = strides[axis_index];
    }
  }
}

template <typename DeviceContext, typename T>
class StridedSliceKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    int rank = ctx.Input<framework::Tensor>("Input")->dims().size();
    switch (rank) {
      case 1:
        StridedSliceCompute<1>(ctx);
        break;
      case 2:
        StridedSliceCompute<2>(ctx);
        break;
      case 3:
        StridedSliceCompute<3>(ctx);
        break;
      case 4:
        StridedSliceCompute<4>(ctx);
        break;
      case 5:
        StridedSliceCompute<5>(ctx);
        break;
      case 6:
        StridedSliceCompute<6>(ctx);
        break;
    }
  }

 private:
  template <size_t D>
  void StridedSliceCompute(const framework::ExecutionContext& context) const {
    auto& place =
        *context.template device_context<DeviceContext>().eigen_device();
    auto in = context.Input<framework::Tensor>("Input");
    auto out = context.Output<framework::Tensor>("Out");
    auto in_dims = in->dims();

197 198 199 200 201 202 203 204
    auto starts_int = context.Attr<std::vector<int>>("starts");
    auto ends_int = context.Attr<std::vector<int>>("ends");
    auto strides_int = context.Attr<std::vector<int>>("strides");

    std::vector<int64_t> starts(starts_int.begin(), starts_int.end());
    std::vector<int64_t> ends(ends_int.begin(), ends_int.end());
    std::vector<int64_t> strides(strides_int.begin(), strides_int.end());

W
wangchaochaohu 已提交
205
    auto axes = context.Attr<std::vector<int>>("axes");
206
    auto infer_flags = context.Attr<std::vector<int>>("infer_flags");
207
    auto decrease_axis = context.Attr<std::vector<int>>("decrease_axis");
W
wangchaochaohu 已提交
208 209 210 211 212 213

    auto starts_indices = Eigen::DSizes<Eigen::DenseIndex, D>();
    auto ends_indices = Eigen::DSizes<Eigen::DenseIndex, D>();
    auto strides_indices = Eigen::DSizes<Eigen::DenseIndex, D>();
    auto reverse_axis = Eigen::array<bool, D>();

214 215 216 217 218 219 220 221
    auto list_new_ends_tensor =
        context.MultiInput<framework::Tensor>("EndsTensorList");
    auto list_new_starts_tensor =
        context.MultiInput<framework::Tensor>("StartsTensorList");
    auto list_new_strides_tensor =
        context.MultiInput<framework::Tensor>("StridesTensorList");

    if (list_new_starts_tensor.size() > 0) {
222
      starts = GetDataFromTensorList<int64_t>(list_new_starts_tensor);
223 224
    } else if (context.HasInput("StartsTensor")) {
      auto* starts_tensor = context.Input<framework::Tensor>("StartsTensor");
225
      starts = GetDataFromTensor<int64_t>(starts_tensor);
226 227 228
    }

    if (list_new_ends_tensor.size() > 0) {
229
      ends = GetDataFromTensorList<int64_t>(list_new_ends_tensor);
230 231
    } else if (context.HasInput("EndsTensor")) {
      auto* ends_tensor = context.Input<framework::Tensor>("EndsTensor");
232
      ends = GetDataFromTensor<int64_t>(ends_tensor);
233 234 235
    }

    if (list_new_strides_tensor.size() > 0) {
236
      strides = GetDataFromTensorList<int64_t>(list_new_strides_tensor);
237 238
    } else if (context.HasInput("StridesTensor")) {
      auto* strides_tensor = context.Input<framework::Tensor>("StridesTensor");
239
      strides = GetDataFromTensor<int64_t>(strides_tensor);
240 241
    }

242
    std::vector<int64_t> out_dims_vector(in_dims.size(), -1);
243
    StridedSliceOutDims(starts, ends, strides, axes, infer_flags, in_dims,
244 245
                        decrease_axis, out_dims_vector.data(), axes.size(),
                        false);
246 247
    framework::DDim out_dims(framework::make_ddim(out_dims_vector));

W
wangchaochaohu 已提交
248 249
    std::vector<int> reverse_vector(starts.size(), 0);
    StridedSliceFunctor(starts.data(), ends.data(), strides.data(), axes.data(),
250 251
                        reverse_vector.data(), in_dims, infer_flags,
                        decrease_axis, starts.size());
W
wangchaochaohu 已提交
252 253 254 255 256

    for (size_t axis = 0; axis < D; axis++) {
      starts_indices[axis] = 0;
      ends_indices[axis] = out_dims[axis];
      strides_indices[axis] = 1;
257
      reverse_axis[axis] = false;
W
wangchaochaohu 已提交
258 259 260 261 262 263 264 265 266
    }
    for (size_t axis = 0; axis < axes.size(); axis++) {
      int axis_index = axes[axis];
      starts_indices[axis_index] = starts[axis];
      ends_indices[axis_index] = ends[axis];
      strides_indices[axis_index] = strides[axis];
      reverse_axis[axis_index] = (reverse_vector[axis] == 1) ? true : false;
    }

267 268
    auto out_dims_origin = out_dims;
    if (decrease_axis.size() > 0) {
269
      std::vector<int64_t> new_out_shape;
270
      for (size_t i = 0; i < decrease_axis.size(); ++i) {
271 272 273 274 275
        PADDLE_ENFORCE_EQ(
            out_dims[decrease_axis[i]], 1,
            platform::errors::InvalidArgument(
                "the size of decrease dimension should be 1, but received %d.",
                out_dims[decrease_axis[i]]));
276 277 278 279 280 281 282 283 284 285 286 287 288 289
        out_dims_origin[decrease_axis[i]] = 0;
      }

      for (int i = 0; i < out_dims_origin.size(); ++i) {
        if (out_dims_origin[i] != 0) {
          new_out_shape.push_back(out_dims_origin[i]);
        }
      }
      if (new_out_shape.size() == 0) {
        new_out_shape.push_back(1);
      }
      out_dims_origin = framework::make_ddim(new_out_shape);
    }

290 291 292 293 294 295 296 297
    bool need_reverse = false;
    for (size_t axis = 0; axis < axes.size(); axis++) {
      if (reverse_vector[axis] == 1) {
        need_reverse = true;
        break;
      }
    }

298
    out->Resize(out_dims);
W
wangchaochaohu 已提交
299 300 301 302 303 304 305
    out->mutable_data<T>(context.GetPlace());
    auto in_t =
        framework::EigenTensor<T, D, Eigen::RowMajor, Eigen::DenseIndex>::From(
            *in);
    auto out_t =
        framework::EigenTensor<T, D, Eigen::RowMajor, Eigen::DenseIndex>::From(
            *out, out_dims);
306 307 308 309 310 311 312 313 314 315 316 317
    if (need_reverse) {
      framework::Tensor tmp;
      tmp.mutable_data<T>(out_dims, context.GetPlace());
      auto tmp_t = framework::EigenTensor<T, D, Eigen::RowMajor,
                                          Eigen::DenseIndex>::From(tmp);
      tmp_t.device(place) =
          in_t.stridedSlice(starts_indices, ends_indices, strides_indices);
      out_t.device(place) = tmp_t.reverse(reverse_axis);
    } else {
      out_t.device(place) =
          in_t.stridedSlice(starts_indices, ends_indices, strides_indices);
    }
318 319 320 321

    if (decrease_axis.size() > 0) {
      out->Resize(out_dims_origin);
    }
W
wangchaochaohu 已提交
322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368
  }
};

template <typename DeviceContext, typename T>
class StridedSliceGradKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    size_t rank = ctx.Input<framework::Tensor>("Input")->dims().size();
    switch (rank) {
      case 1:
        StridedSliceGradCompute<1>(ctx);
        break;
      case 2:
        StridedSliceGradCompute<2>(ctx);
        break;
      case 3:
        StridedSliceGradCompute<3>(ctx);
        break;
      case 4:
        StridedSliceGradCompute<4>(ctx);
        break;
      case 5:
        StridedSliceGradCompute<5>(ctx);
        break;
      case 6:
        StridedSliceGradCompute<6>(ctx);
        break;
    }
  }

 private:
  template <size_t D>
  void StridedSliceGradCompute(
      const framework::ExecutionContext& context) const {
    auto& place =
        *context.template device_context<DeviceContext>().eigen_device();
    auto* d_input =
        context.Input<framework::Tensor>(framework::GradVarName("Out"));
    auto* d_out =
        context.Output<framework::Tensor>(framework::GradVarName("Input"));
    d_out->mutable_data<T>(context.GetPlace());

    auto& dev_ctx = context.template device_context<DeviceContext>();
    math::SetConstant<DeviceContext, T> set_zero;
    set_zero(dev_ctx, d_out, static_cast<T>(0));
    auto out_dims = d_out->dims();
    auto in_dims = d_input->dims();
369 370 371 372 373 374 375 376 377

    auto starts_int = context.Attr<std::vector<int>>("starts");
    auto ends_int = context.Attr<std::vector<int>>("ends");
    auto strides_int = context.Attr<std::vector<int>>("strides");

    std::vector<int64_t> starts(starts_int.begin(), starts_int.end());
    std::vector<int64_t> ends(ends_int.begin(), ends_int.end());
    std::vector<int64_t> strides(strides_int.begin(), strides_int.end());

W
wangchaochaohu 已提交
378
    auto axes = context.Attr<std::vector<int>>("axes");
379 380
    auto infer_flags = context.Attr<std::vector<int>>("infer_flags");
    auto decrease_axis = context.Attr<std::vector<int>>("decrease_axis");
W
wangchaochaohu 已提交
381

382 383 384 385 386 387 388 389
    auto list_new_ends_tensor =
        context.MultiInput<framework::Tensor>("EndsTensorList");
    auto list_new_starts_tensor =
        context.MultiInput<framework::Tensor>("StartsTensorList");
    auto list_new_strides_tensor =
        context.MultiInput<framework::Tensor>("StridesTensorList");

    if (list_new_starts_tensor.size() > 0) {
390
      starts = GetDataFromTensorList<int64_t>(list_new_starts_tensor);
391 392
    } else if (context.HasInput("StartsTensor")) {
      auto* starts_tensor = context.Input<framework::Tensor>("StartsTensor");
393
      starts = GetDataFromTensor<int64_t>(starts_tensor);
394 395 396
    }

    if (list_new_ends_tensor.size() > 0) {
397
      ends = GetDataFromTensorList<int64_t>(list_new_ends_tensor);
398 399
    } else if (context.HasInput("EndsTensor")) {
      auto* ends_tensor = context.Input<framework::Tensor>("EndsTensor");
400
      ends = GetDataFromTensor<int64_t>(ends_tensor);
401 402 403
    }

    if (list_new_strides_tensor.size() > 0) {
404
      strides = GetDataFromTensorList<int64_t>(list_new_strides_tensor);
405 406
    } else if (context.HasInput("StridesTensor")) {
      auto* strides_tensor = context.Input<framework::Tensor>("StridesTensor");
407
      strides = GetDataFromTensor<int64_t>(strides_tensor);
408 409
    }

W
wangchaochaohu 已提交
410 411 412 413 414 415 416 417
    auto starts_indices = Eigen::DSizes<Eigen::DenseIndex, D>();
    auto ends_indices = Eigen::DSizes<Eigen::DenseIndex, D>();
    auto strides_indices = Eigen::DSizes<Eigen::DenseIndex, D>();

    auto reverse_axis = Eigen::array<bool, D>();
    std::vector<int> reverse_vector(starts.size(), 0);

    StridedSliceFunctor(starts.data(), ends.data(), strides.data(), axes.data(),
418 419
                        reverse_vector.data(), out_dims, infer_flags,
                        decrease_axis, starts.size());
W
wangchaochaohu 已提交
420 421 422 423 424 425 426 427 428 429 430 431 432 433

    for (size_t axis = 0; axis < D; axis++) {
      starts_indices[axis] = 0;
      ends_indices[axis] = out_dims[axis];
      strides_indices[axis] = 1;
    }
    for (size_t axis = 0; axis < axes.size(); axis++) {
      int axis_index = axes[axis];
      starts_indices[axis_index] = starts[axis];
      ends_indices[axis_index] = ends[axis];
      strides_indices[axis_index] = strides[axis];
      reverse_axis[axis_index] = (reverse_vector[axis] == 1) ? true : false;
    }

434 435 436 437 438 439 440
    bool need_reverse = false;
    for (size_t axis = 0; axis < axes.size(); axis++) {
      if (reverse_vector[axis] == 1) {
        need_reverse = true;
        break;
      }
    }
W
wangchaochaohu 已提交
441 442 443 444 445 446
    auto in_t =
        framework::EigenTensor<T, D, Eigen::RowMajor, Eigen::DenseIndex>::From(
            *d_input);
    auto out_t =
        framework::EigenTensor<T, D, Eigen::RowMajor, Eigen::DenseIndex>::From(
            *d_out, out_dims);
447 448 449 450 451 452 453 454 455 456 457 458 459 460
    if (need_reverse) {
      framework::Tensor reverse_input;
      reverse_input.mutable_data<T>(in_dims, context.GetPlace());
      auto reverse_in_t =
          framework::EigenTensor<T, D, Eigen::RowMajor,
                                 Eigen::DenseIndex>::From(reverse_input);

      reverse_in_t.device(place) = in_t.reverse(reverse_axis);
      out_t.stridedSlice(starts_indices, ends_indices, strides_indices)
          .device(place) = reverse_in_t;
    } else {
      out_t.stridedSlice(starts_indices, ends_indices, strides_indices)
          .device(place) = in_t;
    }
W
wangchaochaohu 已提交
461 462 463 464
  }
};
}  // namespace operators
}  // namespace paddle