temporal_shift_op.cc 7.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12
/* Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserve.
   Licensed under the Apache License, Version 2.0 (the "License");
   you may not use this file except in compliance with the License.
   You may obtain a copy of the License at
   http://www.apache.org/licenses/LICENSE-2.0
   Unless required by applicable law or agreed to in writing, software
   distributed under the License is distributed on an "AS IS" BASIS,
   WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
   See the License for the specific language governing permissions and
   limitations under the License. */

#include "paddle/fluid/operators/temporal_shift_op.h"
13 14 15
#include <memory>
#include <string>
#include <vector>
16 17 18 19 20 21 22
#include "paddle/fluid/framework/op_registry.h"

namespace paddle {
namespace operators {

using framework::Tensor;

D
dengkaipeng 已提交
23
class TemporalShiftOp : public framework::OperatorWithKernel {
24 25 26 27 28
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

 protected:
  void InferShape(framework::InferShapeContext* ctx) const override {
29
    PADDLE_ENFORCE_EQ(ctx->HasInput("X"), true,
30 31 32 33 34 35
                      platform::errors::NotFound(
                          "Input(X) of TemporalShiftOp should not be null."));
    PADDLE_ENFORCE_EQ(
        ctx->HasOutput("Out"), true,
        platform::errors::NotFound(
            "Output(Out) of TemporalShiftOp should not be null."));
36 37

    auto dim_x = ctx->GetInputDim("X");
D
dengkaipeng 已提交
38
    PADDLE_ENFORCE_EQ(dim_x.size(), 4,
39 40 41 42
                      platform::errors::InvalidArgument(
                          "Input(X) rank should be 4 in shape of [N*T, C, H, "
                          "W], but received X rank(%d)",
                          dim_x.size()));
43 44

    int seg_num = ctx->Attrs().Get<int>("seg_num");
D
dengkaipeng 已提交
45
    float shift_ratio = ctx->Attrs().Get<float>("shift_ratio");
46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
    PADDLE_ENFORCE_GT(
        seg_num, 0,
        platform::errors::InvalidArgument(
            "Attr(seg_num) should be greater than 0, but received %d",
            seg_num));
    PADDLE_ENFORCE_GT(
        shift_ratio, 0.,
        platform::errors::InvalidArgument(
            "Attr(shift_ratio) should be greater than 0, but received %d",
            shift_ratio));
    PADDLE_ENFORCE_LT(
        shift_ratio, 0.5,
        platform::errors::InvalidArgument(
            "Attr(shift_ratio) should be less than 0.5, but received %d",
            shift_ratio));
61 62

    if (ctx->IsRuntime()) {
63 64 65 66 67 68
      PADDLE_ENFORCE_EQ(dim_x[0] % seg_num, 0,
                        platform::errors::InvalidArgument(
                            "Input(X) dimension[0] should be divided exactly "
                            "by Attr(seg_num), but received X dimension[0](%d) "
                            "mod seg_num(%d) != 0",
                            dim_x[0], seg_num));
69 70
    }

D
dengkaipeng 已提交
71
    ctx->SetOutputDim("Out", dim_x);
72 73 74 75 76 77
    ctx->ShareLoD("X", "Out");
  }

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
78 79
    return framework::OpKernelType(
        OperatorWithKernel::IndicateVarDataType(ctx, "X"), ctx.GetPlace());
80 81 82 83 84 85 86 87 88 89 90
  }
};

class TemporalShiftOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
  void Make() override {
    AddInput("X",
             "The input tensor of temporal shift operator. "
             "This is a 4-D tensor with shape of [N*T,  C, H, W]. "
             "While N is the batch size, T is the temporal segment "
             "number, C is the channel number, H is the height of "
K
Kaipeng Deng 已提交
91 92
             "features and W is the width of features. "
             "The data type is float32 and float64");
93 94 95 96
    AddOutput("Out",
              "The output tensor of temporal shift operator. "
              "This is a 4-D tensor in the same shape with Input(X).");

D
dengkaipeng 已提交
97 98
    AddAttr<int>("seg_num",
                 "The temporal segment number, this should be a positive "
D
dengkaipeng 已提交
99
                 "integer.");
D
dengkaipeng 已提交
100 101
    AddAttr<float>(
        "shift_ratio",
D
dengkaipeng 已提交
102
        "The shift ratio of the channels, the first :attr:`shift_ratio` part "
D
dengkaipeng 已提交
103
        "of channels will be shifted by -1 along the temporal dimension, "
D
dengkaipeng 已提交
104
        "and the second :attr:`shift_ratio` part of channels will be shifted "
K
Kaipeng Deng 已提交
105 106
        "by 1 along the temporal dimension. :attr:`shift_ratio` should be in "
        "range [0, 0.5]. Default 0.25.")
D
dengkaipeng 已提交
107
        .SetDefault(0.25);
108 109

    AddComment(R"DOC(
110
          This operator calculates the temporal shifting features for Input(X).
111

112
          Input(X) should be in shape of [N*T, C, H, W], while N is the batch
D
dengkaipeng 已提交
113 114
          size, T is the temporal segment number specified by :attr:`seg_num`, 
          C is the channel number, H and W is the height and width of features.
115

D
dengkaipeng 已提交
116
          Temporal Shifting is calculated as follows:
117 118 119 120 121 122 123
          
          Step 1: Reshape Input(X) to [N, T, C, H, W].

          Step 2: Pad 0 to reshaping result in the 2nd(T) dimension with 
          padding width as 1 on each side, padding result will be in shape 
          of [N, T+2, C, H, W].

D
dengkaipeng 已提交
124
          Step 3: Assume :attr:`shift_ratio` is :math:`1/4`, slice padding 
D
dengkaipeng 已提交
125
          result as follows:
126

D
dengkaipeng 已提交
127 128 129 130 131 132 133 134 135 136 137 138
          $$
          slice1 = x[:, :T, :C/4, :, :]
          $$
          $$
          slice2 = x[:, 2:T+2, C/4:C/2, :, :]
          $$
          $$
          slice3 = x[:, 1:T+1, C/2:, :, :]
          $$

          Step 4: Concatenate three slices along the 3rd(C) dimension and 
          reshape result to [N*T, C, H, W].
139 140 141

          For details of temporal shifting, please refer to paper: 
          `Temporal Shift Module <http://arxiv.org/abs/1811.08383>`_ .
142 143 144 145 146

         )DOC");
  }
};

D
dengkaipeng 已提交
147
class TemporalShiftOpGrad : public framework::OperatorWithKernel {
148 149 150 151 152 153
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

 protected:
  void InferShape(framework::InferShapeContext* ctx) const override {
    if (ctx->HasOutput(framework::GradVarName("X"))) {
154 155
      ctx->SetOutputDim(framework::GradVarName("X"),
                        ctx->GetInputDim(framework::GradVarName("Out")));
156 157 158 159 160
    }
  }

  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
161 162 163
    return framework::OpKernelType(OperatorWithKernel::IndicateVarDataType(
                                       ctx, framework::GradVarName("Out")),
                                   ctx.GetPlace());
164 165 166
  }
};

H
hong 已提交
167 168
template <typename T>
class TemporalShiftGradOpMaker : public framework::SingleGradOpMaker<T> {
169
 public:
H
hong 已提交
170
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;
171 172

 protected:
173
  void Apply(GradOpPtr<T> op) const override {
174
    op->SetType("temporal_shift_grad");
H
hong 已提交
175 176 177
    op->SetInput(framework::GradVarName("Out"), this->OutputGrad("Out"));
    op->SetOutput(framework::GradVarName("X"), this->InputGrad("X"));
    op->SetAttrMap(this->Attrs());
178 179 180 181 182 183 184
  }
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
D
dengkaipeng 已提交
185
REGISTER_OPERATOR(temporal_shift, ops::TemporalShiftOp,
H
hong 已提交
186 187 188
                  ops::TemporalShiftOpMaker,
                  ops::TemporalShiftGradOpMaker<paddle::framework::OpDesc>,
                  ops::TemporalShiftGradOpMaker<paddle::imperative::OpBase>);
189 190 191 192 193
REGISTER_OPERATOR(temporal_shift_grad, ops::TemporalShiftOpGrad);
REGISTER_OP_CPU_KERNEL(temporal_shift, ops::TemporalShiftKernel<float>,
                       ops::TemporalShiftKernel<double>);
REGISTER_OP_CPU_KERNEL(temporal_shift_grad, ops::TemporalShiftGradKernel<float>,
                       ops::TemporalShiftGradKernel<double>);