temporal_shift_op.cc 5.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
/* Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserve.
   Licensed under the Apache License, Version 2.0 (the "License");
   you may not use this file except in compliance with the License.
   You may obtain a copy of the License at
   http://www.apache.org/licenses/LICENSE-2.0
   Unless required by applicable law or agreed to in writing, software
   distributed under the License is distributed on an "AS IS" BASIS,
   WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
   See the License for the specific language governing permissions and
   limitations under the License. */

#include "paddle/fluid/operators/temporal_shift_op.h"
#include "paddle/fluid/framework/op_registry.h"

namespace paddle {
namespace operators {

using framework::Tensor;

D
dengkaipeng 已提交
20
class TemporalShiftOp : public framework::OperatorWithKernel {
21 22 23 24 25 26 27 28 29 30 31
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

 protected:
  void InferShape(framework::InferShapeContext* ctx) const override {
    PADDLE_ENFORCE(ctx->HasInput("X"),
                   "Input(X) of TemporalShiftOp should not be null.");
    PADDLE_ENFORCE(ctx->HasOutput("Out"),
                   "Output(Out) of TemporalShiftOp should not be null.");

    auto dim_x = ctx->GetInputDim("X");
D
dengkaipeng 已提交
32 33
    PADDLE_ENFORCE_EQ(dim_x.size(), 4,
                      "Input(X) rank should be 4 in shape of [N*T, C, H, W].");
34 35

    int seg_num = ctx->Attrs().Get<int>("seg_num");
D
dengkaipeng 已提交
36
    float shift_ratio = ctx->Attrs().Get<float>("shift_ratio");
D
dengkaipeng 已提交
37
    PADDLE_ENFORCE_GT(seg_num, 0, "Attr(seg_num) should be greater than 0.");
D
dengkaipeng 已提交
38 39 40
    PADDLE_ENFORCE(shift_ratio > 0 || shift_ratio < .5,
                   "Attr(shift_ratio) should be greater than 0 and less "
                   "than 0.5.");
41 42

    if (ctx->IsRuntime()) {
D
dengkaipeng 已提交
43 44 45
      PADDLE_ENFORCE_EQ(
          dim_x[0] % seg_num, 0,
          "Input(X) dims[0] should be divided exactly by Attr(seg_num).");
46 47
    }

D
dengkaipeng 已提交
48
    ctx->SetOutputDim("Out", dim_x);
49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72
    ctx->ShareLoD("X", "Out");
  }

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
    return framework::OpKernelType(ctx.Input<Tensor>("X")->type(),
                                   ctx.GetPlace());
  }
};

class TemporalShiftOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
  void Make() override {
    AddInput("X",
             "The input tensor of temporal shift operator. "
             "This is a 4-D tensor with shape of [N*T,  C, H, W]. "
             "While N is the batch size, T is the temporal segment "
             "number, C is the channel number, H is the height of "
             "features and W is the width of features.");
    AddOutput("Out",
              "The output tensor of temporal shift operator. "
              "This is a 4-D tensor in the same shape with Input(X).");

D
dengkaipeng 已提交
73 74 75 76 77 78 79 80 81
    AddAttr<int>("seg_num",
                 "The temporal segment number, this should be a positive "
                 "interger.");
    AddAttr<float>(
        "shift_ratio",
        "The shift ratio of the channels, the first shift ratio part "
        "of channels will be shifted by -1 along the temporal dimension, "
        "and the second shift ratio part of channels will be shifted by "
        "1 along the temporal dimension. Default 0.25.")
D
dengkaipeng 已提交
82
        .SetDefault(0.25);
83 84

    AddComment(R"DOC(
85
          This operator calculates the temporal shifting features for Input(X).
86

87
          Input(X) should be in shape of [N*T, C, H, W], while N is the batch
D
dengkaipeng 已提交
88 89
          size, T is the temporal segment number specified by :attr:`seg_num`, 
          C is the channel number, H and W is the height and width of features.
90 91 92 93 94 95 96 97 98

          Temporal Shifting calculates as follows:
          
          Step 1: Reshape Input(X) to [N, T, C, H, W].

          Step 2: Pad 0 to reshaping result in the 2nd(T) dimension with 
          padding width as 1 on each side, padding result will be in shape 
          of [N, T+2, C, H, W].

D
dengkaipeng 已提交
99
          Step 3: Assume :attr:`shift_ratio` is :math:`1/4`, slice padding 
D
dengkaipeng 已提交
100
          result as follows:
101

D
dengkaipeng 已提交
102 103 104 105 106 107 108 109 110 111 112 113
          $$
          slice1 = x[:, :T, :C/4, :, :]
          $$
          $$
          slice2 = x[:, 2:T+2, C/4:C/2, :, :]
          $$
          $$
          slice3 = x[:, 1:T+1, C/2:, :, :]
          $$

          Step 4: Concatenate three slices along the 3rd(C) dimension and 
          reshape result to [N*T, C, H, W].
114 115 116

          For details of temporal shifting, please refer to paper: 
          `Temporal Shift Module <http://arxiv.org/abs/1811.08383>`_ .
117 118 119 120 121

         )DOC");
  }
};

D
dengkaipeng 已提交
122
class TemporalShiftOpGrad : public framework::OperatorWithKernel {
123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

 protected:
  void InferShape(framework::InferShapeContext* ctx) const override {
    PADDLE_ENFORCE(ctx->HasInput("X"), "Input(X) should not be null");
    PADDLE_ENFORCE(ctx->HasInput(framework::GradVarName("Out")),
                   "Input(Out@GRAD) should not be null");
    auto dim_x = ctx->GetInputDim("X");
    if (ctx->HasOutput(framework::GradVarName("X"))) {
      ctx->SetOutputDim(framework::GradVarName("X"), dim_x);
    }
  }

  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
    return framework::OpKernelType(ctx.Input<Tensor>("X")->type(),
                                   ctx.GetPlace());
  }
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
D
dengkaipeng 已提交
148 149
REGISTER_OPERATOR(temporal_shift, ops::TemporalShiftOp,
                  ops::TemporalShiftOpMaker,
150 151 152 153 154 155
                  paddle::framework::DefaultGradOpDescMaker<true>);
REGISTER_OPERATOR(temporal_shift_grad, ops::TemporalShiftOpGrad);
REGISTER_OP_CPU_KERNEL(temporal_shift, ops::TemporalShiftKernel<float>,
                       ops::TemporalShiftKernel<double>);
REGISTER_OP_CPU_KERNEL(temporal_shift_grad, ops::TemporalShiftGradKernel<float>,
                       ops::TemporalShiftGradKernel<double>);