layer.h 8.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#pragma once

X
Xin Pan 已提交
17 18 19 20 21 22 23
// clang-format off
#include "paddle/fluid/framework/python_headers.h"
// clang-format on

#include <map>     // NOLINT
#include <string>  // NOLINT
#include <vector>  // NOLINT
M
minqiyang 已提交
24
#include <memory>  // NOLINT
M
minqiyang 已提交
25

26 27 28 29
#include "paddle/fluid/framework/op_desc.h"
#include "paddle/fluid/framework/operator.h"
#include "paddle/fluid/framework/var_desc.h"
#include "paddle/fluid/platform/enforce.h"
M
minqiyang 已提交
30
#include "paddle/fluid/platform/device_context.h"
M
minqiyang 已提交
31
#include "paddle/fluid/operators/math/math_function.h"
32

M
minqiyang 已提交
33 34
#include "paddle/fluid/imperative/type_defs.h"

35 36 37
namespace paddle {
namespace imperative {

M
minqiyang 已提交
38 39
class VarBase;

X
Xin Pan 已提交
40 41
namespace py = ::pybind11;

X
Xin Pan 已提交
42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67
class PreparedOp {
 public:
  PreparedOp(const framework::OperatorBase& op,
             const framework::RuntimeContext& ctx,
             framework::OperatorWithKernel::OpKernelFunc func,
             platform::DeviceContext* dev_ctx)
      : op(op), ctx(ctx), func(func), dev_ctx(dev_ctx) {}

  static PreparedOp Prepare(const framework::RuntimeContext& ctx,
                            const framework::OperatorWithKernel& op,
                            const platform::Place& place) {
    platform::DeviceContextPool& pool = platform::DeviceContextPool::Instance();
    auto* dev_ctx = pool.Get(place);

    // check if op[type] has kernel registered.
    auto& all_op_kernels = op.AllOpKernels();
    auto kernels_iter = all_op_kernels.find(op.Type());
    if (kernels_iter == all_op_kernels.end()) {
      PADDLE_THROW(
          "There are no kernels which are registered in the %s operator.",
          op.Type());
    }

    framework::OperatorWithKernel::OpKernelMap& kernels = kernels_iter->second;

    auto expected_kernel_key = op.GetExpectedKernelType(
X
Xin Pan 已提交
68
        framework::ExecutionContext(op, framework::Scope(), *dev_ctx, ctx));
X
Xin Pan 已提交
69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88
    VLOG(3) << "expected_kernel_key:" << expected_kernel_key;

    auto kernel_iter = kernels.find(expected_kernel_key);
#ifdef PADDLE_WITH_MKLDNN
    // workaround for missing MKLDNN kernel when FLAGS_use_mkldnn env var is set
    if (kernel_iter == kernels.end() &&
        expected_kernel_key.library_type_ == framework::LibraryType::kMKLDNN) {
      VLOG(3) << "missing MKLDNN kernel: fallbacking to PLAIN one";
      expected_kernel_key.library_type_ = framework::LibraryType::kPlain;
      expected_kernel_key.data_layout_ = framework::DataLayout::kAnyLayout;
      kernel_iter = kernels.find(expected_kernel_key);
    }
#endif
    if (kernel_iter == kernels.end()) {
      PADDLE_THROW("op %s does not have kernel for %s", op.Type(),
                   KernelTypeToString(expected_kernel_key));
    }
    return PreparedOp(op, ctx, kernel_iter->second, dev_ctx);
  }

M
minqiyang 已提交
89 90
  inline platform::DeviceContext* GetDeviceContext() const { return dev_ctx; }

X
Xin Pan 已提交
91 92 93 94 95
  const framework::OperatorBase& op;
  const framework::RuntimeContext& ctx;
  framework::OperatorWithKernel::OpKernelFunc func;
  platform::DeviceContext* dev_ctx;
};
X
polish  
Xin Pan 已提交
96

97 98
class OpBase;

M
minqiyang 已提交
99 100 101 102 103
/* The wrapper for Variable which holds a Variable and a VarBase of its
 * gradient. This object should be managed totally by Python intepreter.
 *
 * Nearly all interface should be implemented in C++.
 */
104 105
class VarBase {
 public:
M
minqiyang 已提交
106
  VarBase() : VarBase(new framework::Variable(), new VarBase(true)) {}
X
polish  
Xin Pan 已提交
107

M
minqiyang 已提交
108 109 110 111
  explicit VarBase(bool stop_gradient)
      : VarBase(new framework::Variable(),
                stop_gradient ? nullptr : new VarBase(true), stop_gradient) {}

M
minqiyang 已提交
112
  VarBase(framework::Variable* var, VarBase* grad)
M
minqiyang 已提交
113 114 115 116
      : VarBase(var, grad, false) {}

 private:
  VarBase(framework::Variable* var, VarBase* grad, bool stop_gradient)
117 118
      : name_(),
        var_desc_(nullptr),
X
polish  
Xin Pan 已提交
119 120
        var_(var),
        grads_(grad),
121
        block_(nullptr),
X
Xin Pan 已提交
122 123
        stop_gradient_(stop_gradient),
        pre_op_(nullptr),
M
minqiyang 已提交
124
        pre_op_out_idx_(-1) {}
125

M
minqiyang 已提交
126
 public:
M
minqiyang 已提交
127
  virtual ~VarBase() {
128
    LOG(ERROR) << "remove var " << name_.c_str();
129 130 131 132 133

    if (block_) {
      block_->RemoveVar(name_);
    }

M
minqiyang 已提交
134 135 136 137 138 139 140 141
    if (var_) {
      delete var_;
    }

    if (grads_) {
      delete grads_;
    }
  }
142

M
minqiyang 已提交
143 144
  inline OpBase* PreOp() const { return pre_op_; }
  inline int PreOpOutIdx() const { return pre_op_out_idx_; }
X
Xin Pan 已提交
145

M
minqiyang 已提交
146 147 148 149
  inline void SetStopGradient(bool stop_gradient) {
    stop_gradient_ = stop_gradient;
  }
  inline bool IsStopGradient() const { return stop_gradient_; }
150

M
minqiyang 已提交
151 152
  void RunBackward();

X
Xin Pan 已提交
153
  void TrackPreOp(OpBase* pre_op, const std::string& pre_op_out_name,
M
minqiyang 已提交
154
                  int pre_op_out_idx, bool pre_op_stop_gradient) {
X
Xin Pan 已提交
155 156 157
    pre_op_ = pre_op;
    pre_op_out_name_ = pre_op_out_name;
    pre_op_out_idx_ = pre_op_out_idx;
M
minqiyang 已提交
158 159 160
    if (pre_op_stop_gradient) {
      stop_gradient_ = pre_op_stop_gradient;
    }
X
Xin Pan 已提交
161 162
  }

M
minqiyang 已提交
163 164 165 166 167 168 169 170 171 172
  void ClearGradient() {
    VLOG(1) << "clear gradient of " << var_desc_->Name();
    if (grads_ && grads_->var_ && grads_->var_->IsInitialized()) {
      auto grads_t = grads_->var_->GetMutable<framework::LoDTensor>();
      operators::math::set_constant(
          *(platform::DeviceContextPool::Instance().Get(
              grads_->var_->Get<framework::LoDTensor>().place())),
          grads_t, 0.0);
    }
  }
X
Xin Pan 已提交
173

M
minqiyang 已提交
174
  framework::LoDTensor& GradValue();
175

M
minqiyang 已提交
176 177
  std::unique_ptr<VarBase> NewVarBase(const platform::Place& dst_place,
                                      const bool blocking) const;
M
minqiyang 已提交
178

M
minqiyang 已提交
179 180 181 182 183 184 185
  inline std::string GradName() const {
    PADDLE_ENFORCE(
        var_desc_,
        "Couldn't get gradient variable's name, please call backward() first");
    return string::Sprintf("%s@IGrad", var_desc_->Name());
  }

186
  std::string name_;
187
  framework::VarDesc* var_desc_;
M
minqiyang 已提交
188

M
minqiyang 已提交
189 190
  framework::Variable* var_;
  VarBase* grads_;
191

192 193
  framework::BlockDesc* block_;

X
Xin Pan 已提交
194
 private:
195
  bool stop_gradient_;
X
Xin Pan 已提交
196 197 198
  OpBase* pre_op_;
  std::string pre_op_out_name_;
  int pre_op_out_idx_;
199 200
};

M
minqiyang 已提交
201 202 203
/* The wrapper for OpDesc which holds a OpDesc and a OpDesc of its
 * gradient. This object should be managed totally by Python intepreter.
 */
204
class PYBIND11_HIDDEN OpBase {
205
 public:
X
Xin Pan 已提交
206 207 208
  OpBase()
      : op_desc_(nullptr),
        forward_id_(-1),
M
minqiyang 已提交
209
        backward_id_(-1),
M
minqiyang 已提交
210
        trace_id_(-1),
211 212
        place_(platform::CPUPlace()),
        backward_hooks_() {}
213 214

  virtual ~OpBase() {
X
Xin Pan 已提交
215 216 217
    for (framework::OpDesc* desc : grad_op_descs_) {
      delete desc;
    }
218 219 220 221

    LOG(ERROR) << "remove op " << op_desc_->Type() << " id " << trace_id_;

    if (block_) {
222
      block_->RemoveOpInternal(op_desc_);
223
    }
224 225

    LOG(ERROR) << "remove op end " << trace_id_;
226 227
  }

X
Xin Pan 已提交
228
  std::map<std::string, std::vector<VarBase*>> ApplyGrad();
229

230 231 232 233
  void RegisterBackwardHooks(const py::object& callable);

  void InvokeBackwardHooks();

X
polish  
Xin Pan 已提交
234 235
  // One of `op_desc_` or `forward_id_` is set, not both.
  // For pure python PyLayer, use `forward_id_`, otherwise, use op_desc_.
236
  framework::OpDesc* op_desc_;
X
Xin Pan 已提交
237
  int forward_id_;
X
polish  
Xin Pan 已提交
238

X
Xin Pan 已提交
239
  // When has backward, one of `grad_op_descs_` or `backward_id_` is set,
X
polish  
Xin Pan 已提交
240
  // not both.
X
polish  
Xin Pan 已提交
241
  // Note: each fwd op corresponds to a vector of bwd ops.
X
Xin Pan 已提交
242
  std::vector<framework::OpDesc*> grad_op_descs_;
X
Xin Pan 已提交
243
  int backward_id_;
M
minqiyang 已提交
244
  int trace_id_;
X
Xin Pan 已提交
245

P
Paddle CI 已提交
246
  platform::Place place_;
M
minqiyang 已提交
247

M
minqiyang 已提交
248 249 250
  VarBasePtrMap input_vars_;
  VarBasePtrMap output_vars_;
  OpBasePtrMap pre_ops_;
X
Xin Pan 已提交
251
  std::map<std::string, std::vector<int>> pre_ops_out_idx_;
252

X
polish  
Xin Pan 已提交
253
  // Inputs to a vector of bwd ops.
X
Xin Pan 已提交
254
  std::vector<framework::VariableValueMap> grad_input_vars_;
X
polish  
Xin Pan 已提交
255
  // Outputs to a vector of bwd ops.
X
Xin Pan 已提交
256
  std::vector<framework::VariableValueMap> grad_output_vars_;
X
polish  
Xin Pan 已提交
257

258
  framework::BlockDesc* block_;
259 260

  std::vector<py::object> backward_hooks_;
261 262 263 264 265 266 267 268 269 270
};

class Layer {
 public:
  virtual ~Layer() {}

  virtual std::vector<VarBase> Forward(const std::vector<VarBase>& inputs) {
    std::vector<VarBase> vars;
    return vars;
  }
X
Xin Pan 已提交
271
};
272

X
Xin Pan 已提交
273 274 275 276
class PyLayer {
 public:
  virtual ~PyLayer() {}

X
polish  
Xin Pan 已提交
277 278
  static const char* kFwdInp;
  static const char* kFwdOut;
X
Xin Pan 已提交
279

X
Xin Pan 已提交
280
  static void RegisterFunc(int func_id, const py::object& py_func);
X
Xin Pan 已提交
281

X
polish  
Xin Pan 已提交
282 283
  static int NumFuncs();

X
Xin Pan 已提交
284
  static std::vector<VarBase*> Apply(int func_id,
X
Xin Pan 已提交
285 286
                                     const std::vector<VarBase*>& inputs);

X
polish  
Xin Pan 已提交
287 288
  static std::vector<framework::Variable*> ApplyGrad(
      int func_id, const std::vector<framework::Variable*>& inputs);
289

X
polish  
Xin Pan 已提交
290 291 292
 private:
  static std::vector<framework::Variable*> CallPythonFunc(
      const py::object& callable, const std::vector<framework::Variable*>& ins);
293 294 295 296
};

}  // namespace imperative
}  // namespace paddle