communicator.cc 51.2 KB
Newer Older
T
tangwei12 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/* Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

15
#include "paddle/fluid/distributed/ps/service/communicator/communicator.h"
16 17
#include <google/protobuf/text_format.h>
#include "gflags/gflags.h"
18
#include "paddle/fluid/distributed/ps/service/brpc_ps_client.h"
19
#include "paddle/fluid/distributed/ps/wrapper/fleet.h"
T
tangwei12 已提交
20
#include "paddle/fluid/platform/profiler.h"
21
#include "paddle/fluid/string/string_helper.h"
T
tangwei12 已提交
22

23 24 25
#define LEARNING_RATE_DECAY_COUNTER "@LR_DECAY_COUNTER@"
#define STEP_COUNTER "@PS_STEP_COUNTER@"

T
tangwei12 已提交
26 27 28 29
namespace paddle {
namespace distributed {

using framework::LoDTensor;
30
using phi::SelectedRows;
T
tangwei12 已提交
31

Y
yaoxuefeng 已提交
32 33
const uint32_t MAX_FEASIGN_NUM = 1024 * 100 * 100;

T
tangwei12 已提交
34 35 36 37 38 39 40 41
inline double GetCurrentUS() {
  struct timeval time;
  gettimeofday(&time, NULL);
  return 1e+6 * time.tv_sec + time.tv_usec;
}

Communicator::Communicator() {}

Z
zhaocaibei123 已提交
42
void Communicator::InitGFlag(const std::string &gflags) {
43
  VLOG(3) << "Init With Gflags:" << gflags;
T
tangwei12 已提交
44 45 46 47 48 49 50 51 52 53 54
  std::vector<std::string> flags = paddle::string::split_string(gflags);
  if (flags.size() < 1) {
    flags.push_back("-max_body_size=314217728");
    flags.push_back("-bthread_concurrency=40");
    flags.push_back("-socket_max_unwritten_bytes=2048000000");
    flags.push_back("-max_connection_pool_size=1950");
  }
  auto it = flags.begin();
  flags.insert(it, "exe default");
  char *flags_ptr[flags.size()];
  for (size_t i = 0; i < flags.size(); ++i) {
55
    flags_ptr[i] = (char *)(flags[i].c_str());  // NOLINT
T
tangwei12 已提交
56 57 58
  }
  int params_cnt = flags.size();
  char **params_ptr = &(flags_ptr[0]);
59
  ::GFLAGS_NAMESPACE::ParseCommandLineFlags(&params_cnt, &params_ptr, true);
T
tangwei12 已提交
60 61 62 63 64 65 66 67
}

std::once_flag Communicator::init_flag_;
std::shared_ptr<Communicator> Communicator::communicator_(nullptr);

void Communicator::InitBrpcClient(
    const std::string &dist_desc,
    const std::vector<std::string> &host_sign_list) {
68
  auto fleet = paddle::distributed::FleetWrapper::GetInstance();
T
tangwei12 已提交
69
  if (_worker_ptr.get() == nullptr) {
70
    _worker_ptr = fleet->worker_ptr_;
T
tangwei12 已提交
71 72 73 74
  }
  return;
}

Z
zhaocaibei123 已提交
75
std::vector<uint64_t> Communicator::GetClientInfo() {
Z
zhaocaibei123 已提交
76
  std::vector<uint64_t> res = _ps_env.GetClientInfo();
Z
zhaocaibei123 已提交
77 78 79 80 81 82 83 84
  for (auto rr : res) {
    VLOG(2) << "Communicator::GetClientInfo " << rr;
  }
  return res;
}

int Communicator::SetClients(std::vector<uint64_t> &host_sign_list) {
  int node = host_sign_list.size();
Z
zhaocaibei123 已提交
85
  return _ps_env.SetPsClients(host_sign_list.data(), node);
Z
zhaocaibei123 已提交
86 87
}

T
tangwei12 已提交
88 89
void Communicator::RpcRecvDense(const std::vector<std::string> &varnames,
                                int table_id, Scope *scope) {
90 91 92
  platform::RecordEvent record_event("Communicator->RpcRecvDense",
                                     platform::TracerEventType::Communication,
                                     1);
T
tangwei12 已提交
93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116
  std::vector<paddle::distributed::Region> regions;
  regions.reserve(varnames.size());
  for (auto &t : varnames) {
    Variable *var = scope->Var(t);
    LoDTensor *tensor = var->GetMutable<LoDTensor>();
    if (platform::is_gpu_place(tensor->place())) {
#ifdef PADDLE_WITH_CUDA
      Variable *temp_var = xpu_temp_scope_->Var(t);
      LoDTensor *temp_tensor = temp_var->GetMutable<LoDTensor>();
      temp_tensor->Resize(tensor->dims());
      float *temp_data = temp_tensor->mutable_data<float>(platform::CPUPlace());
      paddle::distributed::Region reg(temp_data, tensor->numel());
      regions.emplace_back(std::move(reg));
      VLOG(1) << "AsyncCommunicator::RpcRecvDense Var " << t << " table_id "
              << table_id << " Temp_data[0] " << temp_data[0]
              << " Temp_data[-1] " << temp_data[tensor->numel() - 1];
#endif
    } else {
      float *w = tensor->mutable_data<float>(tensor->place());
      paddle::distributed::Region reg(w, tensor->numel());
      regions.emplace_back(std::move(reg));
    }
  }
  auto status =
Z
zhaocaibei123 已提交
117
      _worker_ptr->PullDense(regions.data(), regions.size(), table_id);
T
tangwei12 已提交
118 119 120 121 122
  status.wait();

  for (auto &t : varnames) {
    Variable *var = scope->FindVar(t);
    LoDTensor *tensor = var->GetMutable<LoDTensor>();
123
    VLOG(3) << "AsyncCommunicator::RecvNoBarrier Var " << t << " On gpu? "
T
tangwei12 已提交
124
            << platform::is_gpu_place(tensor->place());
Z
zhaocaibei123 已提交
125 126

    float *temp_recv_data = tensor->mutable_data<float>(platform::CPUPlace());
127
    VLOG(3) << "AsyncCommunicator::RpcRecvDense Var " << t << " table_id "
Z
zhaocaibei123 已提交
128 129
            << table_id << " Temp_data[0] " << temp_recv_data[0]
            << " Temp_data[-1] " << temp_recv_data[tensor->numel() - 1];
T
tangwei12 已提交
130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147
    if (platform::is_gpu_place(tensor->place())) {
#ifdef PADDLE_WITH_CUDA
      LoDTensor *temp_tensor =
          xpu_temp_scope_->FindVar(t)->GetMutable<LoDTensor>();
      framework::TensorCopy(*temp_tensor, tensor->place(), tensor);
      float *temp_data = temp_tensor->mutable_data<float>(platform::CPUPlace());
      VLOG(1) << "AsyncCommunicator::RpcRecvDense Var " << t << " table_id "
              << table_id << " Temp_data[0] " << temp_data[0]
              << " Temp_data[-1] " << temp_data[tensor->numel() - 1];
#endif
    }
  }

  return;
}

void Communicator::RpcSendDenseParam(const std::vector<std::string> &varnames,
                                     int table_id, const Scope &scope) {
148 149 150
  platform::RecordEvent record_event("Communicator->RpcSendDenseParam",
                                     platform::TracerEventType::Communication,
                                     1);
T
tangwei12 已提交
151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179
  auto place = platform::CPUPlace();
  std::vector<paddle::distributed::Region> regions;
  for (auto &t : varnames) {
    Variable *var = scope.FindVar(t);
    CHECK(var != nullptr) << "var[" << t << "] not found";
    LoDTensor *tensor = var->GetMutable<LoDTensor>();
    if (platform::is_gpu_place(tensor->place())) {
#ifdef PADDLE_WITH_CUDA
      Variable *temp_var = xpu_temp_scope_->Var(t);
      LoDTensor *temp_tensor = temp_var->GetMutable<LoDTensor>();
      temp_tensor->Resize(tensor->dims());
      float *temp_data = temp_tensor->mutable_data<float>(platform::CPUPlace());
      framework::TensorCopy(*tensor, platform::CPUPlace(), temp_tensor);
      paddle::distributed::Region reg(temp_data, tensor->numel());
      regions.emplace_back(std::move(reg));
      VLOG(1) << "AsyncCommunicator::RpcSendDenseParam Var " << t
              << " table_id " << table_id << " Temp_data[0] " << temp_data[0]
              << " Temp_data[-1] " << temp_data[tensor->numel() - 1];
#endif
    } else {
      float *w = tensor->mutable_data<float>(place);
      paddle::distributed::Region reg(w, tensor->numel());
      regions.emplace_back(std::move(reg));
      VLOG(1) << "AsyncCommunicator::RpcSendDenseParam Var " << t
              << " talbe_id " << table_id << " Temp_data[0] " << w[0]
              << " Temp_data[-1] " << w[tensor->numel() - 1];
    }
  }
  auto status =
Z
zhaocaibei123 已提交
180
      _worker_ptr->PushDenseParam(regions.data(), regions.size(), table_id);
T
tangwei12 已提交
181 182 183 184 185 186
  status.wait();
  VLOG(4) << "RPC Send Dense Param " << table_id << " done!";
  return;
}

void Communicator::RpcSendDense(const CommContext &ctx, const Scope &scope) {
187 188 189
  platform::RecordEvent record_event("Communicator->RpcSendDense",
                                     platform::TracerEventType::Communication,
                                     1);
T
tangwei12 已提交
190 191 192
  auto &var_names = ctx.origin_varnames;
  auto &table_id = ctx.table_id;
  auto dense_data = std::make_shared<std::vector<float>>();
Z
zhaocaibei123 已提交
193
  size_t request_call_num = _worker_ptr->GetServerNums();
T
tangwei12 已提交
194
  uint32_t num_per_shard =
Z
zhaocaibei123 已提交
195
      DenseDimPerShard(ctx.height_sections[0], request_call_num);
T
tangwei12 已提交
196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214
  dense_data->resize(num_per_shard *
                     request_call_num);  // accessor->update_dim() = 1
  float *data = dense_data->data();
  uint32_t pos = 0;
  for (size_t i = 0; i < var_names.size(); ++i) {
    const LoDTensor tensor = scope.FindVar(var_names[i])->Get<LoDTensor>();
    size_t count = static_cast<size_t>(tensor.numel());
    const float *g = tensor.data<float>();
    CHECK(pos + count <= dense_data->size())
        << "invalid dense size, cur pos[" << pos << "]"
        << " data_num[" << count << "] size[" << dense_data->size() << "]";
    memcpy(data + pos, g, count * sizeof(float));
    pos += count;
  }

  ++_async_call_num;
  DownpourBrpcClosure *closure = new DownpourBrpcClosure(
      request_call_num, [this, request_call_num](void *done) {
        int ret = 0;
215
        auto *closure = (DownpourBrpcClosure *)done;  // NOLINT
T
tangwei12 已提交
216 217 218 219 220 221 222 223 224
        for (size_t i = 0; i < request_call_num; ++i) {
          if (closure->check_response(i, PS_PUSH_DENSE_TABLE) != 0) {
            ret = -1;
            break;
          }
        }
        closure->set_promise_value(ret);
        --_async_call_num;
      });
Z
zhaocaibei123 已提交
225 226
  auto status = _worker_ptr->PushDenseRawGradient(table_id, data,
                                                  dense_data->size(), closure);
T
tangwei12 已提交
227 228 229 230 231 232
  status.wait();
  return;
}

void Communicator::RpcSendSparseParam(const std::string &varname, int table_id,
                                      const Scope &scope) {
233 234 235
  platform::RecordEvent record_event("Communicator->RpcSendSparseParam",
                                     platform::TracerEventType::Communication,
                                     1);
Z
zhaocaibei123 已提交
236
  size_t request_call_num = _worker_ptr->GetServerNums();
T
tangwei12 已提交
237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253
  std::vector<float *> push_g_vec;

  auto *send_var = scope.FindVar(varname);
  auto *tensor = send_var->GetMutable<framework::LoDTensor>();
  auto dim = tensor->dims()[1];
  uint64_t sparse_num = static_cast<uint64_t>(tensor->dims()[0]);
  std::vector<uint64_t> sparse_push_keys(sparse_num);
  std::iota(sparse_push_keys.begin(), sparse_push_keys.end(), 0);
  push_g_vec.reserve(sparse_num);

  for (auto i = 0; i < static_cast<int>(sparse_push_keys.size()); ++i) {
    push_g_vec.push_back(tensor->data<float>() + i * dim);
  }

  DownpourBrpcClosure *closure = new DownpourBrpcClosure(
      request_call_num, [this, request_call_num](void *done) {
        int ret = 0;
254
        auto *closure = (DownpourBrpcClosure *)done;  // NOLINT
T
tangwei12 已提交
255 256 257 258 259 260 261 262
        for (size_t i = 0; i < request_call_num; ++i) {
          if (closure->check_response(i, PS_PUSH_SPARSE_PARAM) != 0) {
            ret = -1;
            break;
          }
        }
        closure->set_promise_value(ret);
      });
Z
zhaocaibei123 已提交
263 264 265
  auto status = _worker_ptr->PushSparseParam(table_id, sparse_push_keys.data(),
                                             (const float **)push_g_vec.data(),
                                             sparse_push_keys.size(), closure);
T
tangwei12 已提交
266 267 268 269 270 271
  status.wait();
  return;
}

void Communicator::RpcSendSparse(const std::string &var_name, int table_id,
                                 const Scope &scope) {
272 273 274
  platform::RecordEvent record_event("Communicator->RpcSendSparse",
                                     platform::TracerEventType::Communication,
                                     1);
Z
zhaocaibei123 已提交
275
  size_t request_call_num = _worker_ptr->GetServerNums();
T
tangwei12 已提交
276 277 278 279
  std::vector<uint64_t> sparse_push_keys;
  std::vector<float *> push_g_vec;

  auto *send_var = scope.FindVar(var_name);
280
  auto *tensor = send_var->GetMutable<phi::SelectedRows>();
T
tangwei12 已提交
281 282 283
  auto dim = tensor->value().dims()[1];
  std::transform(tensor->rows().begin(), tensor->rows().end(),
                 std::back_inserter(sparse_push_keys),
C
Chengmo 已提交
284
                 [&](int64_t id) { return static_cast<uint64_t>(id); });
T
tangwei12 已提交
285 286 287 288 289

  for (auto i = 0; i < static_cast<int>(sparse_push_keys.size()); ++i) {
    push_g_vec.push_back(tensor->mutable_value()->data<float>() + i * dim);
  }

290 291 292 293 294 295 296 297 298 299 300 301
  // TODO(wangguanqun): padding_idx is not ignored, this is a bug.
  // if padding_idx == padding in datareader, the server will core.
  /*
  for (size_t i = 0; i < tensor->rows().size(); ++i) {
    uint64_t real_id = static_cast<uint64_t>(tensor->rows()[i]);
    if (real_id != 0) {
      sparse_push_keys.push_back(real_id);
      push_g_vec.push_back(tensor->mutable_value()->data<float>() + i * dim);
    }
  }
  */

T
tangwei12 已提交
302 303 304 305
  ++_async_call_num;
  DownpourBrpcClosure *closure = new DownpourBrpcClosure(
      request_call_num, [this, request_call_num](void *done) {
        int ret = 0;
306
        auto *closure = (DownpourBrpcClosure *)done;  // NOLINT
T
tangwei12 已提交
307 308 309 310 311 312 313 314 315
        for (size_t i = 0; i < request_call_num; ++i) {
          if (closure->check_response(i, PS_PUSH_SPARSE_TABLE) != 0) {
            ret = -1;
            break;
          }
        }
        closure->set_promise_value(ret);
        --_async_call_num;
      });
Z
zhaocaibei123 已提交
316
  auto status = _worker_ptr->PushSparseRawGradient(
T
tangwei12 已提交
317 318 319 320 321 322 323 324
      table_id, sparse_push_keys.data(), (const float **)push_g_vec.data(),
      sparse_push_keys.size(), closure);
  status.wait();
  return;
}

void Communicator::RpcRecvSparse(const std::string &varname, int table_id,
                                 Scope *scope) {
325 326 327
  platform::RecordEvent record_event("Communicator->RpcRecvSparse",
                                     platform::TracerEventType::Communication,
                                     1);
T
tangwei12 已提交
328 329 330 331 332 333 334 335 336 337 338 339 340
  auto *send_var = scope->Var(varname);
  auto *tensor = send_var->GetMutable<framework::LoDTensor>();
  auto dim = tensor->dims()[1];
  uint64_t sparse_num = static_cast<uint64_t>(tensor->dims()[0]);

  std::vector<uint64_t> sparse_push_keys(sparse_num);
  std::iota(sparse_push_keys.begin(), sparse_push_keys.end(), 0);

  std::vector<float *> push_g_vec;
  for (auto i = 0; i < static_cast<int>(sparse_push_keys.size()); ++i) {
    push_g_vec.push_back(tensor->data<float>() + i * dim);
  }

341 342
  bool training = true;

Z
zhaocaibei123 已提交
343
  auto status = _worker_ptr->PullSparseParam(
344
      (float **)push_g_vec.data(), table_id,  // NOLINT
345
      sparse_push_keys.data(), sparse_push_keys.size(), training);
T
tangwei12 已提交
346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362
  status.wait();
  return;
}

void Communicator::InitParams(const RecvCtxMap &recv_varname_to_ctx) {
  if (trainer_id_ == 0) {
    for (auto &iter : recv_varname_to_ctx) {
      auto &table_id = iter.first;
      auto &varnames = iter.second;
      RpcSendDenseParam(varnames, table_id, *recv_scope_);
      VLOG(1) << "push dense param to table " << table_id
              << " from 0' trainer done";
    }
  }
  return;
}

363 364 365 366 367 368 369 370 371 372 373
void Communicator::PullDense(const RecvCtxMap &recv_varname_to_ctx) {
  for (auto &iter : recv_varname_to_ctx) {
    auto &table_id = iter.first;
    auto &varnames = iter.second;
    RpcRecvDense(varnames, table_id, recv_scope_);
    VLOG(1) << "pull dense param to table " << table_id
            << " from 0' trainer done";
  }
  return;
}

T
tangwei12 已提交
374 375 376 377 378
void Communicator::RpcProfilerControl() {
  if (trainer_id_ == 0) {
    if (!do_server_profiler_ && platform::IsProfileEnabled()) {
      // send profiler start flag
      do_server_profiler_ = true;
Z
zhaocaibei123 已提交
379
      auto start_status = _worker_ptr->StartProfiler();
T
tangwei12 已提交
380 381 382
      start_status.wait();
    } else if (do_server_profiler_ && !platform::IsProfileEnabled()) {
      // send profiler end flag
Z
zhaocaibei123 已提交
383
      auto stop_status = _worker_ptr->StopProfiler();
T
tangwei12 已提交
384 385 386 387 388 389
      stop_status.wait();
      do_server_profiler_ = false;
    }
  }
}

390 391 392 393 394
void Communicator::SendGlobalStep(const CommContext &ctx, int batches,
                                  Scope *send_scope) {
  if (batches == 0) {
    return;
  }
395 396 397
  platform::RecordEvent record_event("Communicator->SendGlobalStep",
                                     platform::TracerEventType::Communication,
                                     1);
398
  auto &table_id = ctx.table_id;
Z
zhaocaibei123 已提交
399
  size_t request_call_num = _worker_ptr->GetServerNums();
400 401 402 403 404 405 406 407 408 409

  auto &var_name = STEP_COUNTER;
  auto *out_var = send_scope->Var(var_name);
  auto *out_t = out_var->GetMutable<framework::LoDTensor>();
  auto *data = out_t->mutable_data<int64_t>({1}, platform::CPUPlace());
  data[0] = static_cast<int64_t>(batches);
  VLOG(3) << "Communicator::SendGlobalStep send: " << batches;
  DownpourBrpcClosure *closure = new DownpourBrpcClosure(
      request_call_num, [this, request_call_num](void *done) {
        int ret = 0;
410
        auto *closure = (DownpourBrpcClosure *)done;  // NOLINT
411 412 413 414 415 416 417 418
        for (size_t i = 0; i < request_call_num; ++i) {
          if (closure->check_response(i, PS_PUSH_GLOBAL_STEP) != 0) {
            ret = -1;
            break;
          }
        }
        closure->set_promise_value(ret);
      });
Z
zhaocaibei123 已提交
419
  auto status = _worker_ptr->PushGlobalStep(table_id, data, closure);
420 421 422 423
  status.wait();
  return;
}

T
tangwei12 已提交
424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457
void AsyncCommunicator::RecvThread() {
  if (!independent_recv_) return;
  VLOG(3) << "Independent RecvThread Start and Wait";

  while (running_) {
    int grad_num = grad_num_.load();
    if (grad_num > min_send_grad_num_before_recv_) {
      RecvByCommunicator();
      grad_num_.store(0);
    } else {
      std::this_thread::sleep_for(std::chrono::milliseconds(10));
    }
  }
  VLOG(1) << "communicator stopped, independent recv thread exit";
}

void AsyncCommunicator::RecvByCommunicator() {
  if (!running_) return;
  RecvNoBarrier();
  VLOG(3) << "run recv graph end";
}

void AsyncCommunicator::RecvNoBarrier() {
  for (auto &iter : recv_varname_to_ctx_) {
    auto &table_id = iter.first;
    auto &varnames = iter.second;
    RpcRecvDense(varnames, table_id, recv_scope_);
  }

  for (auto &iter : recv_varname_to_ctx_) {
    auto var_names = iter.second;
    for (auto &t : var_names) {
      Variable *var = recv_scope_->FindVar(t);
      LoDTensor *tensor = var->GetMutable<LoDTensor>();
458
      VLOG(3) << "AsyncCommunicator::RecvNoBarrier Var " << t << " On gpu? "
T
tangwei12 已提交
459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511
              << platform::is_gpu_place(tensor->place());
      if (platform::is_gpu_place(tensor->place())) {
#ifdef PADDLE_WITH_CUDA
        LoDTensor *temp_tensor =
            xpu_temp_scope_->FindVar(t)->GetMutable<LoDTensor>();
        framework::TensorCopy(*temp_tensor, tensor->place(), tensor);
#endif
      }
    }
  }

  return;
}

void AsyncCommunicator::SendByCommunicator() {
  std::vector<std::future<void>> tasks;
  tasks.reserve(send_varname_to_ctx_.size());

  for (auto &iter : send_varname_to_ctx_) {
    auto &ctx = iter.second;

    auto send_recv_task = [this, &ctx] {
      auto &varnames = ctx.origin_varnames;
      auto &table_id = ctx.table_id;
      size_t var_nums = varnames.size();
      auto &check_queue = send_varname_to_queue_[varnames[0]];
      std::vector<std::vector<std::shared_ptr<Variable>>> vars;
      vars.resize(var_nums);
      int merged_var_num = 0;
      int wait_times = 0;
      while (merged_var_num < max_merge_var_num_) {
        if (check_queue->Size() == 0) {
          VLOG(4) << "wait_times -> " << wait_times;
          if (wait_times >= send_wait_times_) {
            break;
          }
          std::this_thread::sleep_for(std::chrono::milliseconds(10));
          wait_times++;
          continue;
        } else {
          wait_times = 0;
          for (size_t i = 0; i < var_nums; i++) {
            auto &var_name = varnames[i];
            auto &var_queue = send_varname_to_queue_[var_name];
            vars[i].push_back(var_queue->Pop());
          }
          merged_var_num++;
        }
      }
      if (merged_var_num == 0) return;

      for (size_t i = 0; i < var_nums; i++) {
        auto &var_name = varnames[i];
512 513 514 515 516
        if (var_name == STEP_COUNTER) {
          MergeVars<int64_t>(var_name, vars[i], send_scope_.get(), 1);
        } else {
          MergeVars<float>(var_name, vars[i], send_scope_.get(), 1);
        }
T
tangwei12 已提交
517
      }
Z
zhaocaibei123 已提交
518

519 520 521
      if (ctx.is_tensor_table) {
        SendGlobalStep(ctx, merged_var_num, send_scope_.get());
      } else if (ctx.is_sparse) {
T
tangwei12 已提交
522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546
        PADDLE_ENFORCE_EQ(
            varnames.size(), 1,
            platform::errors::InvalidArgument(
                "sparse variables can only be merged by one variables"));
        RpcSendSparse(varnames[0], table_id, *send_scope_);
      } else {
        RpcSendDense(ctx, *send_scope_);
        if (!independent_recv_ &&
            recv_varname_to_ctx_.find(table_id) != recv_varname_to_ctx_.end()) {
          auto recv_varnames = recv_varname_to_ctx_.at(table_id);
          RpcRecvDense(recv_varnames, table_id, recv_scope_);
        }
      }
      if (independent_recv_) {
        grad_num_.fetch_add(1, std::memory_order_relaxed);
      }
    };
    tasks.emplace_back(send_threadpool_->enqueue(std::move(send_recv_task)));
  }
  for (auto &task : tasks) {
    task.wait();
  }
  return;
}

Z
zhaocaibei123 已提交
547 548 549 550 551 552 553
void AsyncCommunicator::PushDensePostProcessing() {
  if (independent_recv_) {
    grad_num_.fetch_add(1, std::memory_order_relaxed);
  }
  return;
}

T
tangwei12 已提交
554 555 556 557 558 559 560 561 562 563 564 565 566 567 568
void AsyncCommunicator::MainThread() {
  VLOG(3) << "AsyncCommunicator MainThread start and wait";

  while (waiting_ && running_) {
    std::this_thread::sleep_for(std::chrono::milliseconds(100));
    VLOG(3) << "wait for running";
  }

  while (running_) {
    SendByCommunicator();
    RpcProfilerControl();
  }
  VLOG(1) << "communicator stopped, send thread exit";
}

Y
yaoxuefeng 已提交
569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607
void AsyncCommunicator::PullSparseToTensorSync(
    const uint64_t table_id, int fea_dim, uint64_t padding_id,
    platform::Place place, bool is_training,
    std::vector<const LoDTensor *> *inputs, std::vector<LoDTensor *> *outputs) {
  std::vector<uint64_t> fea_keys;
  std::vector<float *> pull_result_ptr;
  fea_keys.reserve(MAX_FEASIGN_NUM / 100);
  pull_result_ptr.reserve(MAX_FEASIGN_NUM / 100);
  std::vector<float> init_value(fea_dim, 0);
  framework::LoDTensor *output = nullptr;
  float *output_data = nullptr;
  size_t output_index = -1;
  size_t output_len = 0;
  for (size_t index = 0; index < inputs->size(); ++index) {
    const framework::LoDTensor *tensor = inputs->at(index);
    const int64_t *ids = tensor->data<int64_t>();
    size_t len = tensor->numel();
    for (size_t i = 0; i < len; ++i, output_len += fea_dim) {
      if (!output || output_len == size_t(output->numel())) {
        ++output_index;
        CHECK(output_index < outputs->size());  // NOLINT
        output = outputs->at(output_index);
        output->set_lod(tensor->lod());
        output_data = output->mutable_data<float>(place);
        output_len = 0;
        CHECK(output->numel() % fea_dim == 0);  // NOLINT
        CHECK(output_data != nullptr);          // NOLINT
      }
      uint64_t real_id = static_cast<uint64_t>(ids[i]);
      if (real_id == padding_id) {
        memcpy(output_data + output_len, init_value.data(),
               sizeof(float) * fea_dim);
        continue;
      }
      fea_keys.push_back(real_id);
      pull_result_ptr.push_back(output_data + output_len);
    }
  }
  auto status =
Z
zhaocaibei123 已提交
608 609
      _worker_ptr->PullSparse(pull_result_ptr.data(), table_id, fea_keys.data(),
                              fea_keys.size(), is_training);
Y
yaoxuefeng 已提交
610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629
  status.wait();
  auto ret = status.get();
  if (ret != 0) {
    LOG(ERROR) << "fleet pull sparse failed, status[" << ret << "]";
    sleep(sleep_seconds_before_fail_exit_);
  }
}

void AsyncCommunicator::PushSparseFromTensorAsync(
    const uint64_t table_id, int fea_dim, uint64_t padding_id,
    platform::Place place, std::vector<const framework::LoDTensor *> *inputs,
    const framework::LoDTensor *shows, const framework::LoDTensor *clks,
    std::vector<framework::LoDTensor *> *outputs) {
  int batch_size = -1;
  bool batch_size_consist = true;
  for (auto *input : *inputs) {
    int cur_batch_size =
        input->lod().size() ? input->lod()[0].size() - 1 : input->dims()[0];
    if (batch_size == -1) {
      batch_size = cur_batch_size;
630
    } else if (batch_size != cur_batch_size) {
Y
yaoxuefeng 已提交
631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652
      // CHECK(batch_size == cur_batch_size);  // NOLINT
      batch_size_consist = false;
      break;
    }
  }
  CHECK(batch_size > 0);  // NOLINT

  int show_size =
      shows->lod().size() ? shows->lod()[0].size() - 1 : shows->dims()[0];
  CHECK(show_size == batch_size || show_size == 1);
  int clk_size =
      clks->lod().size() ? clks->lod()[0].size() - 1 : clks->dims()[0];
  CHECK(clk_size == batch_size || clk_size == 1);

  CHECK(outputs->size() == inputs->size());
  std::vector<uint64_t> push_keys;
  push_keys.reserve(MAX_FEASIGN_NUM / 100);
  std::vector<std::vector<float>> push_values;
  push_values.reserve(MAX_FEASIGN_NUM / 100);
  size_t output_len = 0;
  size_t input_idx = 0;

653 654
  VLOG(2) << "fleet.cc::emb_dim: " << fea_dim << " batch_size: " << batch_size
          << " batch_size_consist: " << batch_size_consist;
Y
yaoxuefeng 已提交
655 656 657 658 659 660 661 662 663 664

  // TODO(zhaocaibei123): check type of show/clk is int? float? uint64?
  // const long int* show_tensor = shows->data<int64_t>();
  // const long int* clk_tensor = clks->data<int64_t>();
  const int64_t *show_tensor = shows->data<int64_t>();
  const int64_t *clk_tensor = clks->data<int64_t>();

  for (size_t index = 0; index < inputs->size(); ++index) {
    framework::LoDTensor *g_tensor = outputs->at(index);
    float *g = g_tensor->data<float>();
665

Y
yaoxuefeng 已提交
666 667 668 669 670
    if (batch_size_consist) {  // TODO(zhaocaibei123): add config
                               // scale_sparse_gradient_with_batch_size_
      Eigen::Map<
          Eigen::Matrix<float, Eigen::Dynamic, Eigen::Dynamic, Eigen::RowMajor>>
          g_mat(g, g_tensor->numel() / fea_dim, fea_dim);
671 672
      g_mat.rightCols(fea_dim - 2) *=
          batch_size;  // hard code here, because of cvm_grad op
Y
yaoxuefeng 已提交
673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688
    }

    const framework::LoDTensor *tensor = inputs->at(index);
    const int64_t *ids = tensor->data<int64_t>();
    size_t len = tensor->numel();
    output_len = 0;

    if (tensor->lod().size() > 0) {
      for (size_t i = 0; i < tensor->lod()[0].size() - 1; ++i) {
        for (int j = tensor->lod()[0][i]; j < tensor->lod()[0][i + 1];
             ++j, output_len += fea_dim) {
          uint64_t real_id = static_cast<uint64_t>(ids[j]);
          if (real_id == padding_id) {
            continue;
          }
          push_keys.emplace_back(real_id);
689
          push_values.emplace_back(fea_dim + 1);
Y
yaoxuefeng 已提交
690 691 692
          // slot show clk grad... consistent with CtrCommonPushValue defined in
          // ctr_accessor.h
          push_values.back()[0] = 2;  // TODO(zhaocaibei123): slot
693 694 695 696
          // push_values.back()[1] =
          //    (i >= show_size ? 1 : static_cast<float>(show_tensor[i]));
          // push_values.back()[2] =
          //    (i >= clk_size ? 0 : static_cast<float>(clk_tensor[i]));
Y
yaoxuefeng 已提交
697

698
          float *data = push_values.back().data() + 1;  // hard code here
Y
yaoxuefeng 已提交
699 700 701 702 703 704 705 706 707 708 709 710 711

          memcpy(data, g + output_len, sizeof(float) * fea_dim);

          ++input_idx;
        }
      }
    } else {
      for (size_t i = 0; i < len; ++i, output_len += fea_dim) {
        uint64_t real_id = static_cast<uint64_t>(ids[i]);
        if (real_id == padding_id) {
          continue;
        }
        push_keys.emplace_back(real_id);
712
        push_values.emplace_back(fea_dim + 1);
Y
yaoxuefeng 已提交
713 714 715
        // slot show clk grad... consistent with CtrCommonPushValue defined in
        // ctr_accessor.h
        push_values.back()[0] = 2;  // TODO(zhaocaibei123): slot
716 717 718 719
        // push_values.back()[1] =
        //    (i >= show_size ? 1 : static_cast<float>(show_tensor[i]));
        // push_values.back()[2] =
        //    (i >= clk_size ? 0 : static_cast<float>(clk_tensor[i]));
Y
yaoxuefeng 已提交
720

721
        float *data = push_values.back().data() + 1;
Y
yaoxuefeng 已提交
722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740

        memcpy(data, g + output_len, sizeof(float) * fea_dim);

        ++input_idx;
      }
    }
    CHECK(output_len == g_tensor->numel());
  }

  std::vector<float *> push_g_vec(input_idx, nullptr);

  for (auto i = 0u; i < push_keys.size(); ++i) {
    push_g_vec[i] = push_values.at(i).data();
  }

  PADDLE_ENFORCE_EQ(
      this->Check(table_id), true,
      platform::errors::InvalidArgument(
          "can not find table: %s, please check your config", table_id));
Z
zhaocaibei123 已提交
741 742 743
  auto status = _worker_ptr->PushSparse(table_id, push_keys.data(),
                                        (const float **)push_g_vec.data(),
                                        push_keys.size());
Y
yaoxuefeng 已提交
744 745
}

T
tangwei12 已提交
746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810
void HalfAsyncCommunicator::MainThread() {
  VLOG(3) << "HalfAsyncCommunicator MainThread start and wait";

  while (waiting_ && running_) {
    std::this_thread::sleep_for(std::chrono::milliseconds(100));
    VLOG(3) << "wait for running";
  }

  while (running_) {
    SendByCommunicator();
    BarrierSend();
    RecvByCommunicator();
    BarrierRecv();
    BarrierWeakUp();
  }
  VLOG(1) << "communicator stopped, send thread exit";
}

void AsyncCommunicator::InitImpl(const RpcCtxMap &send_varname_to_ctx,
                                 const RecvCtxMap &recv_varname_to_ctx,
                                 Scope *recv_scope) {
  send_varname_to_ctx_ = std::move(send_varname_to_ctx);
  recv_varname_to_ctx_ = std::move(recv_varname_to_ctx);
  recv_scope_ = std::move(recv_scope);
  send_scope_.reset(new Scope());
  xpu_temp_scope_.reset(new Scope());
  for (auto &iter : send_varname_to_ctx_) {
    auto &ctx = iter.second;
    auto &varnames = ctx.origin_varnames;
    for (auto &var_name : varnames) {
      send_varname_to_queue_[var_name] =
          std::make_shared<BlockingQueue<std::shared_ptr<Variable>>>(
              send_queue_size_);
    }
  }
  send_threadpool_.reset(new ::ThreadPool(thread_pool_size_));
}

AsyncCommunicator::~AsyncCommunicator() {
  running_ = false;
  if (main_thread_) main_thread_->join();
  if (recv_thread_) recv_thread_->join();
}

void AsyncCommunicator::Start() {
  VLOG(1) << "Communicator start";
  if (!communicator_) {
    VLOG(0) << "Communicator is not inited, do nothing";
  } else {
    VLOG(1) << "start send thread and recv thread";
    waiting_ = true;
    running_ = true;
    // flushing_ = false;
    BarrierTriggerReset(max_merge_var_num_);
    // start send and recv thread
    main_thread_.reset(
        new std::thread(std::bind(&AsyncCommunicator::MainThread, this)));
    if (independent_recv_) {
      recv_thread_.reset(
          new std::thread(std::bind(&AsyncCommunicator::RecvThread, this)));
    }
  }
}

void AsyncCommunicator::Stop() {
Z
zhaocaibei123 已提交
811
  VLOG(1) << "Communicator stop begin";
T
tangwei12 已提交
812 813 814 815
  running_ = false;
  if (!communicator_) {
    VLOG(0) << "Communicator is not inited, do nothing";
  } else {
Z
zhaocaibei123 已提交
816
    // _worker_ptr->FinalizeWorker();
Z
zhaocaibei123 已提交
817
    VLOG(1) << "client finalize_worker done";
T
tangwei12 已提交
818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837
    if (recv_thread_) {
      VLOG(1) << "stop recv thread";
      recv_thread_->join();
      recv_thread_.reset(nullptr);
    }
    if (main_thread_) {
      VLOG(1) << "stop main thread";
      main_thread_->join();
      main_thread_.reset(nullptr);
    }
  }
  VLOG(1) << "Communicator stop done";
}

bool AsyncCommunicator::Check(const std::vector<std::string> &var_tables) {
  PADDLE_ENFORCE_EQ(
      var_tables.size(), 1,
      platform::errors::InvalidArgument("var_tables.size() == 1 is permitted"));

  auto table_name = var_tables[0];
838
  if (send_varname_to_ctx_.find(table_name) == send_varname_to_ctx_.end()) {
T
tangwei12 已提交
839
    return false;
840 841 842 843 844
  }
  if (table_name == STEP_COUNTER) {
    VLOG(3) << "send step_counter into queue";
    auto tmp_var = std::make_shared<Variable>();
    auto *tensor = tmp_var->GetMutable<framework::LoDTensor>();
845
    tensor->Resize(phi::make_ddim({1}));
846 847 848 849
    auto *out_d = tensor->mutable_data<int64_t>(platform::CPUPlace());
    out_d[0] = 1;
    send_varname_to_queue_[table_name]->Push(tmp_var);
  }
T
tangwei12 已提交
850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986
  return true;
}

bool AsyncCommunicator::Check(const int table_id) {
  for (auto &iter : send_varname_to_ctx_) {
    auto &ctx = iter.second;
    if (ctx.table_id == table_id) return true;
  }
  return false;
}

void AsyncCommunicator::Send(const std::vector<std::string> &var_names,
                             const framework::Scope &scope) {
  waiting_ = false;
  for (size_t i = 0; i < var_names.size(); i++) {
    auto *var = scope.FindVar(var_names[i]);
    auto tmp_grad_var = std::make_shared<Variable>();
    framework::CopyVariable(*var, tmp_grad_var.get());
    send_varname_to_queue_[var_names[i]]->Push(tmp_grad_var);
  }
}

void HalfAsyncCommunicator::Clean() {
  for (auto &iter : send_varname_to_queue_) {
    auto &var_name = iter.first;
    auto &var_queue = iter.second;

    while (var_queue->Size() > 0) {
      var_queue->Pop();
    }

    VLOG(3) << "clean var: " << var_name << " done";
  }
}

void HalfAsyncCommunicator::BarrierTriggerDecrement() {
  barrier_trigger_--;
  VLOG(3) << "BarrierTriggerDecrement decrement barrier trigger to "
          << barrier_trigger_.load();
}

void HalfAsyncCommunicator::BarrierTriggerReset(int initial_val) {
  barrier_trigger_.store(initial_val);

  VLOG(3) << "BarrierTriggerReset reset barrier trigger to "
          << barrier_trigger_.load();
}

void HalfAsyncCommunicator::Barrier() {
  barrier_counter_++;

  if (!running_) {
    VLOG(3) << "Communicator is not running, release barrier";
    return;
  }

  {
    std::unique_lock<std::mutex> lk(barrier_mutex_);
    barrier_cond_.wait(lk, [this] { return (barrier_counter_ == 0); });
  }
}

int HalfAsyncCommunicator::BatchesCounter() {
  while (running_) {
    if (barrier_counter_.load() >= barrier_trigger_.load() &&
        barrier_trigger_.load() != 0) {
      break;
    } else {
      std::this_thread::sleep_for(std::chrono::milliseconds(10));
    }
  }

  return barrier_counter_.load();
}

void HalfAsyncCommunicator::SendByCommunicator() {
  int batches = BatchesCounter();
  VLOG(1) << "HalfAsyncCommunicator::BatchesCounter = " << batches;
  if (batches <= 0) return;

  std::vector<std::future<void>> tasks;
  tasks.reserve(send_varname_to_ctx_.size());

  for (auto &iter : send_varname_to_ctx_) {
    auto &ctx = iter.second;
    auto send_recv_task = [this, &ctx, batches] {
      auto &varnames = ctx.origin_varnames;
      auto &table_id = ctx.table_id;
      size_t var_nums = varnames.size();

      std::vector<std::vector<std::shared_ptr<Variable>>> vars;
      vars.resize(var_nums);
      for (size_t i = 0; i < var_nums; i++) {
        auto &var_name = varnames[i];
        auto &var_queue = send_varname_to_queue_[var_name];
        for (int j = 0; j < batches; j++) vars[i].push_back(var_queue->Pop());
        MergeVars<float>(var_name, vars[i], send_scope_.get(), 1);
      }

      if (ctx.is_sparse) {
        PADDLE_ENFORCE_EQ(
            varnames.size(), 1,
            platform::errors::InvalidArgument(
                "sparse variables can only be merged by one variables"));
        RpcSendSparse(varnames[0], table_id, *send_scope_);
      } else {
        RpcSendDense(ctx, *send_scope_);
      }
    };
    tasks.emplace_back(send_threadpool_->enqueue(std::move(send_recv_task)));
  }
  for (auto &task : tasks) {
    task.wait();
  }
  return;
}

void HalfAsyncCommunicator::BarrierWeakUp() {
  barrier_counter_.store(0);
  barrier_cond_.notify_all();
}

void SyncCommunicator::BarrierSend() {
  if (!running_) return;
  BarrierWithTable(0);
  VLOG(4) << "BarrierSend with SyncCommunicator";
}

void SyncCommunicator::BarrierRecv() {
  if (!running_) return;
  BarrierWithTable(1);

  VLOG(4) << "BarrierRecv with SyncCommunicator";
}

void GeoCommunicator::Send(const std::vector<std::string> &var_names,
                           const framework::Scope &scope) {
987 988
  platform::RecordEvent record_event(
      "GeoCommunicator->Send", platform::TracerEventType::Communication, 1);
T
tangwei12 已提交
989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005
  waiting_ = false;
  auto before_send = GetCurrentUS();
  auto table_name = var_names[0];

  size_t splited_var_nums =
      send_varname_to_ctx_[table_name].splited_varnames.size();

  std::unordered_map<std::string, std::unordered_set<int64_t>> ids_table;

  for (size_t j = 0; j < splited_var_nums; j++) {
    ids_table.insert(std::pair<std::string, std::unordered_set<int64_t>>(
        send_varname_to_ctx_[table_name].splited_varnames[j],
        std::unordered_set<int64_t>()));
  }

  auto *var = scope.FindVar(table_name);

1006
  PADDLE_ENFORCE_EQ(var->IsType<phi::SelectedRows>(), true,
T
tangwei12 已提交
1007 1008
                    platform::errors::InvalidArgument(
                        "Only need to send Sparse Grad in Geo mode."));
1009
  auto &rows = var->Get<phi::SelectedRows>().rows();
T
tangwei12 已提交
1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022

  // insert ids which has not been record
  for (size_t j = 0; j < rows.size(); j++) {
    auto ep_idx = rows[j] % splited_var_nums;
    ids_table.at(send_varname_to_ctx_[table_name].splited_varnames[ep_idx])
        .insert(rows[j]);
  }

  for (auto &iter : ids_table) {
    auto &key = iter.first;
    auto &sparse_ids_set = iter.second;
    auto sparse_ids_vec = std::make_shared<std::vector<int64_t>>();
    sparse_ids_vec->assign(sparse_ids_set.begin(), sparse_ids_set.end());
Z
zhaocaibei123 已提交
1023
    sparse_id_queues_.at(key)->Put(sparse_ids_vec);
T
tangwei12 已提交
1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044
    VLOG(3) << "push " << sparse_ids_vec->size() << " ids to " << key
            << "'s queue";
  }

  auto after_send = GetCurrentUS();
  VLOG(2) << "run send op finish. use time " << (after_send - before_send);
}

void GeoCommunicator::InitImpl(const RpcCtxMap &send_varname_to_ctx,
                               const RecvCtxMap &recv_varname_to_ctx,
                               Scope *recv_scope) {
  send_varname_to_ctx_ = std::move(send_varname_to_ctx);
  recv_varname_to_ctx_ = std::move(recv_varname_to_ctx);
  recv_scope_ = std::move(recv_scope);

  PADDLE_ENFORCE_GT(
      send_varname_to_ctx.size(), 0,
      platform::errors::InvalidArgument("send var contexts can not be zero"));

  for (auto &iter : send_varname_to_ctx_) {
    auto &ctx = iter.second;
Z
zhaocaibei123 已提交
1045 1046 1047 1048
    if (!ctx.is_sparse) {
      parallel_task_nums_ += 1;
      continue;
    }
T
tangwei12 已提交
1049 1050 1051 1052 1053 1054 1055 1056
    auto &varnames = ctx.origin_varnames;
    PADDLE_ENFORCE_EQ(
        varnames.size(), 1,
        platform::errors::InvalidArgument(
            "sparse variables can only be merged by one variables"));
    for (auto &splited_var : ctx.splited_varnames) {
      parallel_task_nums_ += 1;
      sparse_id_queues_.insert(
Z
zhaocaibei123 已提交
1057 1058
          std::pair<std::string, paddle::framework::Channel<
                                     std::shared_ptr<std::vector<int64_t>>>>(
T
tangwei12 已提交
1059
              splited_var,
Z
zhaocaibei123 已提交
1060 1061
              paddle::framework::MakeChannel<
                  std::shared_ptr<std::vector<int64_t>>>(send_queue_size_)));
T
tangwei12 已提交
1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091
    }
  }

  send_threadpool_.reset(new ::ThreadPool(thread_pool_size_));

  delta_scope_.reset(new Scope());
  old_scope_.reset(new Scope());
  pserver_scope_.reset(new Scope());
}

void GeoCommunicator::InitParams(const RecvCtxMap &recv_varname_to_ctx) {
  std::vector<std::future<void>> tasks;
  tasks.reserve(recv_varname_to_ctx_.size());

  for (auto &iter : recv_varname_to_ctx_) {
    auto &table_id = iter.first;
    auto &varnames = iter.second;

    auto recv_task = [this, &table_id, &varnames] {
      InitDense(varnames, table_id);
    };
    tasks.emplace_back(send_threadpool_->enqueue(std::move(recv_task)));
  }

  for (auto &task : tasks) {
    task.wait();
  }

  for (auto &iter : send_varname_to_ctx_) {
    auto &ctx = iter.second;
T
tangwei12 已提交
1092
    if (!ctx.is_sparse) continue;
T
tangwei12 已提交
1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105
    auto &varname = ctx.origin_varnames[0];
    auto &table_id = ctx.table_id;
    auto param = varname.substr(0, varname.size() - 5);
    InitSparse(param, table_id);
  }
  return;
}

void GeoCommunicator::InitDense(std::vector<std::string> &varnames,
                                int table_id) {
  if (trainer_id_ == 0) {
    RpcSendDenseParam(varnames, table_id, *recv_scope_);
    BarrierWithTable(1);
T
tangwei12 已提交
1106
    VLOG(1) << "push dense param to table " << table_id
T
tangwei12 已提交
1107 1108 1109 1110
            << " from 0' trainer done";
  } else {
    BarrierWithTable(1);
    RpcRecvDense(varnames, table_id, recv_scope_);
T
tangwei12 已提交
1111
    VLOG(1) << "pull dense param to table " << table_id
T
tangwei12 已提交
1112 1113 1114 1115 1116 1117 1118 1119 1120 1121
            << " from 0' trainer done";
  }

  // copy to old_scope
  for (auto &t : varnames) {
    auto *global_var = recv_scope_->FindVar(t);
    global_var->GetMutable<framework::LoDTensor>();
    auto *old_var = old_scope_->Var(t);
    old_var->GetMutable<framework::LoDTensor>();
    framework::CopyVariable(*global_var, old_var);
Z
zhaocaibei123 已提交
1122 1123 1124 1125
    // init pserver_scope_
    auto *pserver_var = pserver_scope_->Var(t);
    pserver_var->GetMutable<framework::LoDTensor>();
    framework::CopyVariable(*global_var, pserver_var);
T
tangwei12 已提交
1126 1127 1128 1129 1130
  }
  VLOG(1) << "init dense table " << table_id << " done";
}

void GeoCommunicator::SendDense(const CommContext &send_ctx) {
1131 1132 1133
  platform::RecordEvent record_event("GeoCommunicator->SendDense",
                                     platform::TracerEventType::Communication,
                                     1);
T
tangwei12 已提交
1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150
  auto &var_names = send_ctx.origin_varnames;
  auto &table_id = send_ctx.table_id;
  for (auto &varname : var_names) {
    auto param_name = GradToParam(varname);
    auto *var_latest = recv_scope_->FindVar(param_name);
    auto *var_timestamp = old_scope_->FindVar(param_name);

    PADDLE_ENFORCE_EQ(var_latest->IsInitialized(), true,
                      platform::errors::Unavailable(
                          "%s is not initialized, please check", param_name));
    PADDLE_ENFORCE_EQ(var_timestamp->IsInitialized(), true,
                      platform::errors::Unavailable(
                          "%s is not initialized, please check", param_name));

    auto &t_latest = var_latest->Get<framework::LoDTensor>();
    auto t_timestamp = var_timestamp->GetMutable<framework::LoDTensor>();

W
Wilber 已提交
1151
    paddle::platform::CPUDeviceContext cpu_ctx;
T
tangwei12 已提交
1152 1153 1154 1155
    auto *var_delta = delta_scope_->Var(varname);
    auto *t_delta = var_delta->GetMutable<framework::LoDTensor>();
    t_delta->mutable_data<float>(t_latest.dims(), cpu_ctx.GetPlace());

1156
    auto blas = phi::funcs::GetBlas<platform::CPUDeviceContext, float>(cpu_ctx);
T
tangwei12 已提交
1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171
    blas.VSUB(t_latest.numel(), t_latest.data<float>(),
              t_timestamp->data<float>(), t_delta->data<float>());

    float coefficient = 1.0 / static_cast<float>(trainers_);
    blas.SCAL(t_latest.numel(), coefficient, t_delta->data<float>());

    blas.VADD(t_latest.numel(), t_timestamp->data<float>(),
              t_delta->data<float>(), t_timestamp->data<float>());
  }
  RpcSendDense(send_ctx, *delta_scope_);
  VLOG(1) << "Finish Send Dense " << var_names[0] << ", table_id: " << table_id;
  return;
}

void GeoCommunicator::RecvDense(const CommContext &send_ctx) {
1172 1173 1174
  platform::RecordEvent record_event("GeoCommunicator->RecvDense",
                                     platform::TracerEventType::Communication,
                                     1);
T
tangwei12 已提交
1175 1176 1177 1178 1179 1180
  auto &table_id = send_ctx.table_id;
  auto &varnames = recv_varname_to_ctx_.at(table_id);
  // 1. recv from pserver
  RpcRecvDense(varnames, table_id, pserver_scope_.get());

  // 2.1 pserver - old => delta; 2.2 latest + old => latest 2.3 old => pserver
W
Wilber 已提交
1181
  paddle::platform::CPUDeviceContext cpu_ctx;
T
tangwei12 已提交
1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195
  for (auto &varname : varnames) {
    auto *var_latest = recv_scope_->FindVar(varname);
    auto t_latest = var_latest->GetMutable<framework::LoDTensor>();

    auto *var_old = old_scope_->FindVar(varname);
    auto t_old = var_old->GetMutable<framework::LoDTensor>();

    auto *var_pserver = pserver_scope_->FindVar(varname);
    auto t_pserver = var_pserver->Get<framework::LoDTensor>();

    auto *var_delta = delta_scope_->Var(varname);
    auto *t_delta = var_delta->GetMutable<framework::LoDTensor>();
    t_delta->mutable_data<float>(t_latest->dims(), cpu_ctx.GetPlace());

1196
    auto blas = phi::funcs::GetBlas<platform::CPUDeviceContext, float>(cpu_ctx);
T
tangwei12 已提交
1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208
    blas.VSUB(t_latest->numel(), t_pserver.data<float>(), t_old->data<float>(),
              t_delta->data<float>());
    blas.VADD(t_latest->numel(), t_latest->data<float>(),
              t_delta->data<float>(), t_latest->data<float>());
    blas.VCOPY(t_latest->numel(), t_pserver.data<float>(),
               t_old->data<float>());
  }
  VLOG(1) << "Finish Recv Dense " << varnames[0] << ", table_id: " << table_id;
  return;
}

void GeoCommunicator::InitSparse(const std::string &var_name, int table_id) {
T
tangwei12 已提交
1209
  VLOG(1) << "Init Sparse " << var_name << " : table " << table_id << " begin.";
T
tangwei12 已提交
1210 1211 1212
  if (trainer_id_ == 0) {
    RpcSendSparseParam(var_name, table_id, *recv_scope_);
    BarrierWithTable(1);
T
tangwei12 已提交
1213
    VLOG(1) << "push sparse param to table " << table_id
T
tangwei12 已提交
1214 1215 1216 1217
            << " from 0' trainer done";
  } else {
    BarrierWithTable(1);
    RpcRecvSparse(var_name, table_id, recv_scope_);
T
tangwei12 已提交
1218
    VLOG(1) << "pull sparse param to table " << table_id
T
tangwei12 已提交
1219 1220 1221
            << " from 0' trainer done";
  }

T
tangwei12 已提交
1222
  VLOG(1) << "Init Sparse " << var_name << " : table " << table_id << " done.";
T
tangwei12 已提交
1223 1224 1225 1226 1227 1228 1229 1230
  auto *global_var = recv_scope_->FindVar(var_name);
  auto *var = old_scope_->Var(var_name);
  framework::CopyVariable(*global_var, var);
  return;
}

std::vector<int64_t> GeoCommunicator::MergeSparseIds(
    const std::string &send_varname) {
1231 1232 1233
  platform::RecordEvent record_event("GeoCommunicator->MergeSparseIds",
                                     platform::TracerEventType::Communication,
                                     1);
T
tangwei12 已提交
1234 1235 1236 1237 1238 1239
  size_t merge_num = 0, wait_times = 0;
  std::unordered_set<int64_t> sparse_ids;
  while (merge_num < static_cast<size_t>(max_merge_var_num_)) {
    VLOG(3) << "Merge Number of " << send_varname << " = " << merge_num;
    if (sparse_id_queues_.at(send_varname)->Size() > 0) {
      wait_times = 0;
Z
zhaocaibei123 已提交
1240 1241
      std::shared_ptr<std::vector<int64_t>> pop_ids = nullptr;
      sparse_id_queues_.at(send_varname)->Get(pop_ids);
T
tangwei12 已提交
1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264
      for (size_t j = 0; j < pop_ids->size(); j++) {
        sparse_ids.insert(pop_ids->at(j));
      }
      merge_num += 1;
      VLOG(3) << "sparse_id_queues_(" << send_varname << ") pushed";
    } else if (sparse_id_queues_.at(send_varname)->Size() == 0) {
      VLOG(3) << "wait_times -> " << wait_times;
      if (wait_times >= static_cast<size_t>(send_wait_times_)) {
        break;
      }
      std::this_thread::sleep_for(std::chrono::milliseconds(10));
      wait_times++;
      continue;
    }
  }
  std::vector<int64_t> res;
  res.assign(sparse_ids.begin(), sparse_ids.end());
  return res;
}

void GeoCommunicator::SendSparse(const std::string &varname,
                                 std::vector<int64_t> &sparse_ids, int table_id,
                                 int ep_idx) {
1265 1266 1267
  platform::RecordEvent record_event("GeoCommunicator->SendSparse",
                                     platform::TracerEventType::Communication,
                                     1);
Z
zhaocaibei123 已提交
1268 1269 1270
  if (sparse_ids.size() == 0) {
    return;
  }
T
tangwei12 已提交
1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289
  std::string param_name = SplitedGradToParam(varname);
  VLOG(1) << "In GeoCommunicator::SendSparse(" << varname << " " << param_name
          << ", ids.size = " << sparse_ids.size() << ", table_id: " << table_id
          << ", ep_idx: " << ep_idx;

  auto *var_latest = recv_scope_->FindVar(param_name);
  auto *var_old = old_scope_->FindVar(param_name);

  PADDLE_ENFORCE_EQ(var_latest->IsInitialized(), true,
                    platform::errors::Unavailable(
                        "%s is not initialized, please check", param_name));
  PADDLE_ENFORCE_EQ(var_old->IsInitialized(), true,
                    platform::errors::Unavailable(
                        "%s is not initialized, please check", param_name));

  auto &t_latest = var_latest->Get<framework::LoDTensor>();
  auto *t_old = var_old->GetMutable<framework::LoDTensor>();

  auto dims1 = t_latest.dims()[1];
W
Wilber 已提交
1290
  paddle::platform::CPUDeviceContext cpu_ctx;
T
tangwei12 已提交
1291 1292

  auto *var_delta = delta_scope_->Var(varname);
1293
  auto *t_delta = var_delta->GetMutable<phi::SelectedRows>();
T
tangwei12 已提交
1294 1295 1296 1297 1298 1299 1300
  auto *var_t_value = t_delta->mutable_value();
  var_t_value->Resize({static_cast<int64_t>(sparse_ids.size()), dims1});
  auto *t_value = var_t_value->mutable_data<float>(cpu_ctx.GetPlace());

  t_delta->set_rows(sparse_ids);
  t_delta->set_height(t_latest.dims()[0]);

1301
  auto blas = phi::funcs::GetBlas<platform::CPUDeviceContext, float>(cpu_ctx);
T
tangwei12 已提交
1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313
  float coefficient = 1.0 / static_cast<float>(trainers_);

  std::vector<float *> push_g_vec;
  for (auto j = 0; j < static_cast<int>(sparse_ids.size()); ++j) {
    blas.VSUB(dims1, t_latest.data<float>() + sparse_ids[j] * dims1,
              t_old->data<float>() + sparse_ids[j] * dims1,
              t_value + j * dims1);
    blas.SCAL(dims1, coefficient, t_value + j * dims1);
    blas.VADD(dims1, t_old->data<float>() + sparse_ids[j] * dims1,
              t_value + j * dims1,
              t_old->data<float>() + sparse_ids[j] * dims1);
    push_g_vec.push_back(t_value + j * dims1);
Z
zhaocaibei123 已提交
1314 1315 1316 1317

    VLOG(5) << "DEBUG GeoCommunicator::SendSparse send sparse key "
            << sparse_ids[j] << " value[0] " << push_g_vec[j][0]
            << " value[-1] " << push_g_vec[j][dims1 - 1];
T
tangwei12 已提交
1318 1319 1320 1321 1322
  }

  ++_async_call_num;
  DownpourBrpcClosure *closure = new DownpourBrpcClosure(1, [this](void *done) {
    int ret = 0;
1323
    auto *closure = (DownpourBrpcClosure *)done;  // NOLINT
T
tangwei12 已提交
1324 1325 1326 1327 1328 1329
    if (closure->check_response(0, PS_PUSH_SPARSE_TABLE) != 0) {
      ret = -1;
    }
    closure->set_promise_value(ret);
    --_async_call_num;
  });
Z
zhaocaibei123 已提交
1330
  auto status = _worker_ptr->PushSparseRawGradientPartial(
T
tangwei12 已提交
1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341
      table_id, (const uint64_t *)sparse_ids.data(),
      (const float **)push_g_vec.data(), sparse_ids.size(), closure, ep_idx);
  status.wait();

  VLOG(1) << "Finish Send Sparse " << varname
          << ", ids.size = " << sparse_ids.size() << ", table_id: " << table_id;
  return;
}

void GeoCommunicator::RecvSparse(const std::string &varname, int table_id,
                                 int ep_idx) {
1342 1343 1344
  platform::RecordEvent record_event("GeoCommunicator->RecvSparse",
                                     platform::TracerEventType::Communication,
                                     1);
T
tangwei12 已提交
1345 1346 1347
  // 1. recv from pserver
  std::vector<uint64_t> keys;
  std::vector<float> values;
Z
zhaocaibei123 已提交
1348
  auto status = _worker_ptr->PullGeoParam(table_id, &values, &keys, ep_idx);
T
tangwei12 已提交
1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367
  status.wait();

  std::string param = SplitedGradToParam(varname);
  VLOG(1) << "RecvSparse receive var: " << varname << " " << param << ", "
          << table_id << "; ids Size: " << keys.size()
          << "; values size: " << values.size();

  auto *var_latest = recv_scope_->FindVar(param);
  auto *var_old = old_scope_->FindVar(param);

  auto *t_latest = var_latest->GetMutable<framework::LoDTensor>();
  auto *t_old = var_old->GetMutable<framework::LoDTensor>();

  auto dims1 = t_latest->dims()[1];
  auto numel = keys.size() * dims1;

  std::vector<float> v_delta;
  v_delta.resize(numel);

W
Wilber 已提交
1368
  paddle::platform::CPUDeviceContext cpu_ctx;
1369
  auto blas = phi::funcs::GetBlas<platform::CPUDeviceContext, float>(cpu_ctx);
T
tangwei12 已提交
1370 1371

  for (auto j = 0; j < static_cast<int>(keys.size()); ++j) {
Z
zhaocaibei123 已提交
1372 1373 1374
    VLOG(5) << "DEBUG GeoCommunicator::RecvSparse recv sparse key" << keys[j]
            << "value[0] " << values[j * dims1] << " value[-1] "
            << values[j * dims1 + dims1 - 1];
T
tangwei12 已提交
1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438
    float *latest_data = t_latest->data<float>() + keys[j] * dims1;
    float *old_data = t_old->data<float>() + keys[j] * dims1;
    // pserver - old => delta
    blas.VSUB(dims1, values.data() + j * dims1, old_data,
              v_delta.data() + j * dims1);
    // latest + delta => latest
    blas.VADD(dims1, latest_data, v_delta.data() + j * dims1, latest_data);
    // pserver => old
    blas.VCOPY(dims1, values.data() + j * dims1, old_data);
  }
  VLOG(1) << "Finish Recv Sparse " << param << ", table_id: " << table_id;
}

void GeoCommunicator::MainThread() {
  VLOG(3) << "MainThread start and wait";

  while (waiting_ && running_) {
    std::this_thread::sleep_for(std::chrono::milliseconds(100));
    VLOG(3) << "wait for running";
  }

  while (running_) {
    std::vector<std::future<void>> tasks;
    tasks.reserve(parallel_task_nums_);

    for (auto &iter : send_varname_to_ctx_) {
      auto &ctx = iter.second;
      auto &varnames = ctx.origin_varnames;
      auto &table_id = ctx.table_id;

      if (ctx.is_sparse) {
        PADDLE_ENFORCE_EQ(
            varnames.size(), 1,
            platform::errors::InvalidArgument(
                "sparse variables can only be merged by one variables"));
        int pserver_num = static_cast<int>(ctx.epmap.size());
        for (int ep_idx = 0; ep_idx < pserver_num; ep_idx++) {
          // varname: emb@GRAD, param_name: emb, splited_varname: emb.delta0
          auto send_recv_task = [this, table_id, ep_idx, &ctx] {
            auto splited_varname = ctx.splited_varnames[ep_idx];
            auto sparse_ids = MergeSparseIds(splited_varname);
            SendSparse(splited_varname, sparse_ids, table_id, ep_idx);
            RecvSparse(splited_varname, table_id, ep_idx);
          };
          tasks.emplace_back(
              send_threadpool_->enqueue(std::move(send_recv_task)));
        }
      } else {
        auto send_recv_task = [this, &ctx] {
          SendDense(ctx);
          RecvDense(ctx);
        };
        tasks.emplace_back(
            send_threadpool_->enqueue(std::move(send_recv_task)));
      }
    }
    for (auto &task : tasks) {
      task.wait();
    }
  }
}

}  // namespace distributed
}  // namespace paddle