communicator.cc 50.1 KB
Newer Older
T
tangwei12 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/* Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

15
#include "paddle/fluid/distributed/ps/service/communicator/communicator.h"
Z
zhaocaibei123 已提交
16

17
#include <google/protobuf/text_format.h>
T
tangwei12 已提交
18

19
#include "gflags/gflags.h"
20
#include "paddle/fluid/distributed/ps/service/brpc_ps_client.h"
T
tangwei12 已提交
21
#include "paddle/fluid/platform/profiler.h"
22
#include "paddle/fluid/string/string_helper.h"
T
tangwei12 已提交
23

24 25 26
#define LEARNING_RATE_DECAY_COUNTER "@LR_DECAY_COUNTER@"
#define STEP_COUNTER "@PS_STEP_COUNTER@"

T
tangwei12 已提交
27 28 29 30
namespace paddle {
namespace distributed {

using framework::LoDTensor;
31
using pten::SelectedRows;
T
tangwei12 已提交
32

Y
yaoxuefeng 已提交
33 34
const uint32_t MAX_FEASIGN_NUM = 1024 * 100 * 100;

T
tangwei12 已提交
35 36 37 38 39 40 41 42 43
inline double GetCurrentUS() {
  struct timeval time;
  gettimeofday(&time, NULL);
  return 1e+6 * time.tv_sec + time.tv_usec;
}

Communicator::Communicator() {}

void Communicator::init_gflag(const std::string &gflags) {
44
  VLOG(3) << "Init With Gflags:" << gflags;
T
tangwei12 已提交
45 46 47 48 49 50 51 52 53 54 55
  std::vector<std::string> flags = paddle::string::split_string(gflags);
  if (flags.size() < 1) {
    flags.push_back("-max_body_size=314217728");
    flags.push_back("-bthread_concurrency=40");
    flags.push_back("-socket_max_unwritten_bytes=2048000000");
    flags.push_back("-max_connection_pool_size=1950");
  }
  auto it = flags.begin();
  flags.insert(it, "exe default");
  char *flags_ptr[flags.size()];
  for (size_t i = 0; i < flags.size(); ++i) {
56
    flags_ptr[i] = (char *)(flags[i].c_str());  // NOLINT
T
tangwei12 已提交
57 58 59
  }
  int params_cnt = flags.size();
  char **params_ptr = &(flags_ptr[0]);
60
  ::GFLAGS_NAMESPACE::ParseCommandLineFlags(&params_cnt, &params_ptr, true);
T
tangwei12 已提交
61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92
}

std::once_flag Communicator::init_flag_;
std::shared_ptr<Communicator> Communicator::communicator_(nullptr);

void Communicator::InitBrpcClient(
    const std::string &dist_desc,
    const std::vector<std::string> &host_sign_list) {
  // not used, just for psclient's init
  std::map<uint64_t, std::vector<paddle::distributed::Region>>
      _dense_pull_regions;
  for (auto &iter : recv_varname_to_ctx_) {
    auto tid = iter.first;
    auto var_names = iter.second;

    auto &regions = _dense_pull_regions[tid];
    regions.reserve(var_names.size());
    for (auto &t : var_names) {
      Variable *var = recv_scope_->FindVar(t);
      LoDTensor *tensor = var->GetMutable<LoDTensor>();
      float *w = tensor->data<float>();
      paddle::distributed::Region reg(w, tensor->numel());
      regions.emplace_back(std::move(reg));
    }
  }

  if (_worker_ptr.get() == nullptr) {
    google::protobuf::TextFormat::ParseFromString(dist_desc, &_ps_param);
    init_gflag(_ps_param.init_gflags());
    servers_ = host_sign_list.size();
    _ps_env = paddle::distributed::PaddlePSEnvironment();
    _ps_env.set_ps_servers(&host_sign_list, servers_);
Z
zhaocaibei123 已提交
93
    _worker_ptr = std::unique_ptr<paddle::distributed::PSClient>(
T
tangwei12 已提交
94 95 96 97 98 99 100
        paddle::distributed::PSClientFactory::create(_ps_param));
    _worker_ptr->configure(_ps_param, _dense_pull_regions, _ps_env,
                           trainer_id_);
  }
  return;
}

Z
zhaocaibei123 已提交
101 102 103 104 105 106 107 108 109 110 111 112 113
std::vector<uint64_t> Communicator::GetClientInfo() {
  std::vector<uint64_t> res = _ps_env.get_client_info();
  for (auto rr : res) {
    VLOG(2) << "Communicator::GetClientInfo " << rr;
  }
  return res;
}

int Communicator::SetClients(std::vector<uint64_t> &host_sign_list) {
  int node = host_sign_list.size();
  return _ps_env.set_ps_clients(host_sign_list.data(), node);
}

T
tangwei12 已提交
114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148
void Communicator::RpcRecvDense(const std::vector<std::string> &varnames,
                                int table_id, Scope *scope) {
  platform::RecordEvent record_event("Communicator->RpcRecvDense");
  std::vector<paddle::distributed::Region> regions;
  regions.reserve(varnames.size());
  for (auto &t : varnames) {
    Variable *var = scope->Var(t);
    LoDTensor *tensor = var->GetMutable<LoDTensor>();
    if (platform::is_gpu_place(tensor->place())) {
#ifdef PADDLE_WITH_CUDA
      Variable *temp_var = xpu_temp_scope_->Var(t);
      LoDTensor *temp_tensor = temp_var->GetMutable<LoDTensor>();
      temp_tensor->Resize(tensor->dims());
      float *temp_data = temp_tensor->mutable_data<float>(platform::CPUPlace());
      paddle::distributed::Region reg(temp_data, tensor->numel());
      regions.emplace_back(std::move(reg));
      VLOG(1) << "AsyncCommunicator::RpcRecvDense Var " << t << " table_id "
              << table_id << " Temp_data[0] " << temp_data[0]
              << " Temp_data[-1] " << temp_data[tensor->numel() - 1];
#endif
    } else {
      float *w = tensor->mutable_data<float>(tensor->place());
      paddle::distributed::Region reg(w, tensor->numel());
      regions.emplace_back(std::move(reg));
    }
  }
  auto status =
      _worker_ptr->pull_dense(regions.data(), regions.size(), table_id);
  status.wait();

  for (auto &t : varnames) {
    Variable *var = scope->FindVar(t);
    LoDTensor *tensor = var->GetMutable<LoDTensor>();
    VLOG(1) << "AsyncCommunicator::RecvNoBarrier Var " << t << " On gpu? "
            << platform::is_gpu_place(tensor->place());
Z
zhaocaibei123 已提交
149 150 151 152 153

    float *temp_recv_data = tensor->mutable_data<float>(platform::CPUPlace());
    VLOG(1) << "AsyncCommunicator::RpcRecvDense Var " << t << " table_id "
            << table_id << " Temp_data[0] " << temp_recv_data[0]
            << " Temp_data[-1] " << temp_recv_data[tensor->numel() - 1];
T
tangwei12 已提交
154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234
    if (platform::is_gpu_place(tensor->place())) {
#ifdef PADDLE_WITH_CUDA
      LoDTensor *temp_tensor =
          xpu_temp_scope_->FindVar(t)->GetMutable<LoDTensor>();
      framework::TensorCopy(*temp_tensor, tensor->place(), tensor);
      float *temp_data = temp_tensor->mutable_data<float>(platform::CPUPlace());
      VLOG(1) << "AsyncCommunicator::RpcRecvDense Var " << t << " table_id "
              << table_id << " Temp_data[0] " << temp_data[0]
              << " Temp_data[-1] " << temp_data[tensor->numel() - 1];
#endif
    }
  }

  return;
}

void Communicator::RpcSendDenseParam(const std::vector<std::string> &varnames,
                                     int table_id, const Scope &scope) {
  platform::RecordEvent record_event("Communicator->RpcSendDenseParam");
  auto place = platform::CPUPlace();
  std::vector<paddle::distributed::Region> regions;
  for (auto &t : varnames) {
    Variable *var = scope.FindVar(t);
    CHECK(var != nullptr) << "var[" << t << "] not found";
    LoDTensor *tensor = var->GetMutable<LoDTensor>();
    if (platform::is_gpu_place(tensor->place())) {
#ifdef PADDLE_WITH_CUDA
      Variable *temp_var = xpu_temp_scope_->Var(t);
      LoDTensor *temp_tensor = temp_var->GetMutable<LoDTensor>();
      temp_tensor->Resize(tensor->dims());
      float *temp_data = temp_tensor->mutable_data<float>(platform::CPUPlace());
      framework::TensorCopy(*tensor, platform::CPUPlace(), temp_tensor);
      paddle::distributed::Region reg(temp_data, tensor->numel());
      regions.emplace_back(std::move(reg));
      VLOG(1) << "AsyncCommunicator::RpcSendDenseParam Var " << t
              << " table_id " << table_id << " Temp_data[0] " << temp_data[0]
              << " Temp_data[-1] " << temp_data[tensor->numel() - 1];
#endif
    } else {
      float *w = tensor->mutable_data<float>(place);
      paddle::distributed::Region reg(w, tensor->numel());
      regions.emplace_back(std::move(reg));
      VLOG(1) << "AsyncCommunicator::RpcSendDenseParam Var " << t
              << " talbe_id " << table_id << " Temp_data[0] " << w[0]
              << " Temp_data[-1] " << w[tensor->numel() - 1];
    }
  }
  auto status =
      _worker_ptr->push_dense_param(regions.data(), regions.size(), table_id);
  status.wait();
  VLOG(4) << "RPC Send Dense Param " << table_id << " done!";
  return;
}

void Communicator::RpcSendDense(const CommContext &ctx, const Scope &scope) {
  platform::RecordEvent record_event("Communicator->RpcSendDense");
  auto &var_names = ctx.origin_varnames;
  auto &table_id = ctx.table_id;
  auto dense_data = std::make_shared<std::vector<float>>();
  size_t request_call_num = _worker_ptr->get_server_nums();
  uint32_t num_per_shard =
      dense_dim_per_shard(ctx.height_sections[0], request_call_num);
  dense_data->resize(num_per_shard *
                     request_call_num);  // accessor->update_dim() = 1
  float *data = dense_data->data();
  uint32_t pos = 0;
  for (size_t i = 0; i < var_names.size(); ++i) {
    const LoDTensor tensor = scope.FindVar(var_names[i])->Get<LoDTensor>();
    size_t count = static_cast<size_t>(tensor.numel());
    const float *g = tensor.data<float>();
    CHECK(pos + count <= dense_data->size())
        << "invalid dense size, cur pos[" << pos << "]"
        << " data_num[" << count << "] size[" << dense_data->size() << "]";
    memcpy(data + pos, g, count * sizeof(float));
    pos += count;
  }

  ++_async_call_num;
  DownpourBrpcClosure *closure = new DownpourBrpcClosure(
      request_call_num, [this, request_call_num](void *done) {
        int ret = 0;
235
        auto *closure = (DownpourBrpcClosure *)done;  // NOLINT
T
tangwei12 已提交
236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271
        for (size_t i = 0; i < request_call_num; ++i) {
          if (closure->check_response(i, PS_PUSH_DENSE_TABLE) != 0) {
            ret = -1;
            break;
          }
        }
        closure->set_promise_value(ret);
        --_async_call_num;
      });
  auto status = _worker_ptr->push_dense_raw_gradient(
      table_id, data, dense_data->size(), closure);
  status.wait();
  return;
}

void Communicator::RpcSendSparseParam(const std::string &varname, int table_id,
                                      const Scope &scope) {
  platform::RecordEvent record_event("Communicator->RpcSendSparseParam");
  size_t request_call_num = _worker_ptr->get_server_nums();
  std::vector<float *> push_g_vec;

  auto *send_var = scope.FindVar(varname);
  auto *tensor = send_var->GetMutable<framework::LoDTensor>();
  auto dim = tensor->dims()[1];
  uint64_t sparse_num = static_cast<uint64_t>(tensor->dims()[0]);
  std::vector<uint64_t> sparse_push_keys(sparse_num);
  std::iota(sparse_push_keys.begin(), sparse_push_keys.end(), 0);
  push_g_vec.reserve(sparse_num);

  for (auto i = 0; i < static_cast<int>(sparse_push_keys.size()); ++i) {
    push_g_vec.push_back(tensor->data<float>() + i * dim);
  }

  DownpourBrpcClosure *closure = new DownpourBrpcClosure(
      request_call_num, [this, request_call_num](void *done) {
        int ret = 0;
272
        auto *closure = (DownpourBrpcClosure *)done;  // NOLINT
T
tangwei12 已提交
273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295
        for (size_t i = 0; i < request_call_num; ++i) {
          if (closure->check_response(i, PS_PUSH_SPARSE_PARAM) != 0) {
            ret = -1;
            break;
          }
        }
        closure->set_promise_value(ret);
      });
  auto status = _worker_ptr->push_sparse_param(
      table_id, sparse_push_keys.data(), (const float **)push_g_vec.data(),
      sparse_push_keys.size(), closure);
  status.wait();
  return;
}

void Communicator::RpcSendSparse(const std::string &var_name, int table_id,
                                 const Scope &scope) {
  platform::RecordEvent record_event("Communicator->RpcSendSparse");
  size_t request_call_num = _worker_ptr->get_server_nums();
  std::vector<uint64_t> sparse_push_keys;
  std::vector<float *> push_g_vec;

  auto *send_var = scope.FindVar(var_name);
296
  auto *tensor = send_var->GetMutable<pten::SelectedRows>();
T
tangwei12 已提交
297 298 299
  auto dim = tensor->value().dims()[1];
  std::transform(tensor->rows().begin(), tensor->rows().end(),
                 std::back_inserter(sparse_push_keys),
C
Chengmo 已提交
300
                 [&](int64_t id) { return static_cast<uint64_t>(id); });
T
tangwei12 已提交
301 302 303 304 305

  for (auto i = 0; i < static_cast<int>(sparse_push_keys.size()); ++i) {
    push_g_vec.push_back(tensor->mutable_value()->data<float>() + i * dim);
  }

306 307 308 309 310 311 312 313 314 315 316 317
  // TODO(wangguanqun): padding_idx is not ignored, this is a bug.
  // if padding_idx == padding in datareader, the server will core.
  /*
  for (size_t i = 0; i < tensor->rows().size(); ++i) {
    uint64_t real_id = static_cast<uint64_t>(tensor->rows()[i]);
    if (real_id != 0) {
      sparse_push_keys.push_back(real_id);
      push_g_vec.push_back(tensor->mutable_value()->data<float>() + i * dim);
    }
  }
  */

T
tangwei12 已提交
318 319 320 321
  ++_async_call_num;
  DownpourBrpcClosure *closure = new DownpourBrpcClosure(
      request_call_num, [this, request_call_num](void *done) {
        int ret = 0;
322
        auto *closure = (DownpourBrpcClosure *)done;  // NOLINT
T
tangwei12 已提交
323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354
        for (size_t i = 0; i < request_call_num; ++i) {
          if (closure->check_response(i, PS_PUSH_SPARSE_TABLE) != 0) {
            ret = -1;
            break;
          }
        }
        closure->set_promise_value(ret);
        --_async_call_num;
      });
  auto status = _worker_ptr->push_sparse_raw_gradient(
      table_id, sparse_push_keys.data(), (const float **)push_g_vec.data(),
      sparse_push_keys.size(), closure);
  status.wait();
  return;
}

void Communicator::RpcRecvSparse(const std::string &varname, int table_id,
                                 Scope *scope) {
  platform::RecordEvent record_event("Communicator->RpcRecvSparse");
  auto *send_var = scope->Var(varname);
  auto *tensor = send_var->GetMutable<framework::LoDTensor>();
  auto dim = tensor->dims()[1];
  uint64_t sparse_num = static_cast<uint64_t>(tensor->dims()[0]);

  std::vector<uint64_t> sparse_push_keys(sparse_num);
  std::iota(sparse_push_keys.begin(), sparse_push_keys.end(), 0);

  std::vector<float *> push_g_vec;
  for (auto i = 0; i < static_cast<int>(sparse_push_keys.size()); ++i) {
    push_g_vec.push_back(tensor->data<float>() + i * dim);
  }

355 356
  bool training = true;

357 358
  auto status = _worker_ptr->pull_sparse(
      (float **)push_g_vec.data(), table_id,  // NOLINT
359
      sparse_push_keys.data(), sparse_push_keys.size(), training);
T
tangwei12 已提交
360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376
  status.wait();
  return;
}

void Communicator::InitParams(const RecvCtxMap &recv_varname_to_ctx) {
  if (trainer_id_ == 0) {
    for (auto &iter : recv_varname_to_ctx) {
      auto &table_id = iter.first;
      auto &varnames = iter.second;
      RpcSendDenseParam(varnames, table_id, *recv_scope_);
      VLOG(1) << "push dense param to table " << table_id
              << " from 0' trainer done";
    }
  }
  return;
}

377 378 379 380 381 382 383 384 385 386 387
void Communicator::PullDense(const RecvCtxMap &recv_varname_to_ctx) {
  for (auto &iter : recv_varname_to_ctx) {
    auto &table_id = iter.first;
    auto &varnames = iter.second;
    RpcRecvDense(varnames, table_id, recv_scope_);
    VLOG(1) << "pull dense param to table " << table_id
            << " from 0' trainer done";
  }
  return;
}

T
tangwei12 已提交
388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403
void Communicator::RpcProfilerControl() {
  if (trainer_id_ == 0) {
    if (!do_server_profiler_ && platform::IsProfileEnabled()) {
      // send profiler start flag
      do_server_profiler_ = true;
      auto start_status = _worker_ptr->start_profiler();
      start_status.wait();
    } else if (do_server_profiler_ && !platform::IsProfileEnabled()) {
      // send profiler end flag
      auto stop_status = _worker_ptr->stop_profiler();
      stop_status.wait();
      do_server_profiler_ = false;
    }
  }
}

404 405 406 407 408
void Communicator::SendGlobalStep(const CommContext &ctx, int batches,
                                  Scope *send_scope) {
  if (batches == 0) {
    return;
  }
C
Chengmo 已提交
409
  platform::RecordEvent record_event("Communicator->SendGlobalStep");
410 411 412 413 414 415 416 417 418 419 420 421
  auto &table_id = ctx.table_id;
  size_t request_call_num = _worker_ptr->get_server_nums();

  auto &var_name = STEP_COUNTER;
  auto *out_var = send_scope->Var(var_name);
  auto *out_t = out_var->GetMutable<framework::LoDTensor>();
  auto *data = out_t->mutable_data<int64_t>({1}, platform::CPUPlace());
  data[0] = static_cast<int64_t>(batches);
  VLOG(3) << "Communicator::SendGlobalStep send: " << batches;
  DownpourBrpcClosure *closure = new DownpourBrpcClosure(
      request_call_num, [this, request_call_num](void *done) {
        int ret = 0;
422
        auto *closure = (DownpourBrpcClosure *)done;  // NOLINT
423 424 425 426 427 428 429 430 431 432 433 434 435
        for (size_t i = 0; i < request_call_num; ++i) {
          if (closure->check_response(i, PS_PUSH_GLOBAL_STEP) != 0) {
            ret = -1;
            break;
          }
        }
        closure->set_promise_value(ret);
      });
  auto status = _worker_ptr->push_global_step(table_id, data, closure);
  status.wait();
  return;
}

T
tangwei12 已提交
436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523
void AsyncCommunicator::RecvThread() {
  if (!independent_recv_) return;
  VLOG(3) << "Independent RecvThread Start and Wait";

  while (running_) {
    int grad_num = grad_num_.load();
    if (grad_num > min_send_grad_num_before_recv_) {
      RecvByCommunicator();
      grad_num_.store(0);
    } else {
      std::this_thread::sleep_for(std::chrono::milliseconds(10));
    }
  }
  VLOG(1) << "communicator stopped, independent recv thread exit";
}

void AsyncCommunicator::RecvByCommunicator() {
  if (!running_) return;
  RecvNoBarrier();
  VLOG(3) << "run recv graph end";
}

void AsyncCommunicator::RecvNoBarrier() {
  for (auto &iter : recv_varname_to_ctx_) {
    auto &table_id = iter.first;
    auto &varnames = iter.second;
    RpcRecvDense(varnames, table_id, recv_scope_);
  }

  for (auto &iter : recv_varname_to_ctx_) {
    auto var_names = iter.second;
    for (auto &t : var_names) {
      Variable *var = recv_scope_->FindVar(t);
      LoDTensor *tensor = var->GetMutable<LoDTensor>();
      VLOG(1) << "AsyncCommunicator::RecvNoBarrier Var " << t << " On gpu? "
              << platform::is_gpu_place(tensor->place());
      if (platform::is_gpu_place(tensor->place())) {
#ifdef PADDLE_WITH_CUDA
        LoDTensor *temp_tensor =
            xpu_temp_scope_->FindVar(t)->GetMutable<LoDTensor>();
        framework::TensorCopy(*temp_tensor, tensor->place(), tensor);
#endif
      }
    }
  }

  return;
}

void AsyncCommunicator::SendByCommunicator() {
  std::vector<std::future<void>> tasks;
  tasks.reserve(send_varname_to_ctx_.size());

  for (auto &iter : send_varname_to_ctx_) {
    auto &ctx = iter.second;

    auto send_recv_task = [this, &ctx] {
      auto &varnames = ctx.origin_varnames;
      auto &table_id = ctx.table_id;
      size_t var_nums = varnames.size();
      auto &check_queue = send_varname_to_queue_[varnames[0]];
      std::vector<std::vector<std::shared_ptr<Variable>>> vars;
      vars.resize(var_nums);
      int merged_var_num = 0;
      int wait_times = 0;
      while (merged_var_num < max_merge_var_num_) {
        if (check_queue->Size() == 0) {
          VLOG(4) << "wait_times -> " << wait_times;
          if (wait_times >= send_wait_times_) {
            break;
          }
          std::this_thread::sleep_for(std::chrono::milliseconds(10));
          wait_times++;
          continue;
        } else {
          wait_times = 0;
          for (size_t i = 0; i < var_nums; i++) {
            auto &var_name = varnames[i];
            auto &var_queue = send_varname_to_queue_[var_name];
            vars[i].push_back(var_queue->Pop());
          }
          merged_var_num++;
        }
      }
      if (merged_var_num == 0) return;

      for (size_t i = 0; i < var_nums; i++) {
        auto &var_name = varnames[i];
524 525 526 527 528
        if (var_name == STEP_COUNTER) {
          MergeVars<int64_t>(var_name, vars[i], send_scope_.get(), 1);
        } else {
          MergeVars<float>(var_name, vars[i], send_scope_.get(), 1);
        }
T
tangwei12 已提交
529
      }
Z
zhaocaibei123 已提交
530

531 532 533
      if (ctx.is_tensor_table) {
        SendGlobalStep(ctx, merged_var_num, send_scope_.get());
      } else if (ctx.is_sparse) {
T
tangwei12 已提交
534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558
        PADDLE_ENFORCE_EQ(
            varnames.size(), 1,
            platform::errors::InvalidArgument(
                "sparse variables can only be merged by one variables"));
        RpcSendSparse(varnames[0], table_id, *send_scope_);
      } else {
        RpcSendDense(ctx, *send_scope_);
        if (!independent_recv_ &&
            recv_varname_to_ctx_.find(table_id) != recv_varname_to_ctx_.end()) {
          auto recv_varnames = recv_varname_to_ctx_.at(table_id);
          RpcRecvDense(recv_varnames, table_id, recv_scope_);
        }
      }
      if (independent_recv_) {
        grad_num_.fetch_add(1, std::memory_order_relaxed);
      }
    };
    tasks.emplace_back(send_threadpool_->enqueue(std::move(send_recv_task)));
  }
  for (auto &task : tasks) {
    task.wait();
  }
  return;
}

Z
zhaocaibei123 已提交
559 560 561 562 563 564 565
void AsyncCommunicator::PushDensePostProcessing() {
  if (independent_recv_) {
    grad_num_.fetch_add(1, std::memory_order_relaxed);
  }
  return;
}

T
tangwei12 已提交
566 567 568 569 570 571 572 573 574 575 576 577 578 579 580
void AsyncCommunicator::MainThread() {
  VLOG(3) << "AsyncCommunicator MainThread start and wait";

  while (waiting_ && running_) {
    std::this_thread::sleep_for(std::chrono::milliseconds(100));
    VLOG(3) << "wait for running";
  }

  while (running_) {
    SendByCommunicator();
    RpcProfilerControl();
  }
  VLOG(1) << "communicator stopped, send thread exit";
}

Y
yaoxuefeng 已提交
581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755
void AsyncCommunicator::PullSparseToTensorSync(
    const uint64_t table_id, int fea_dim, uint64_t padding_id,
    platform::Place place, bool is_training,
    std::vector<const LoDTensor *> *inputs, std::vector<LoDTensor *> *outputs) {
  std::vector<uint64_t> fea_keys;
  std::vector<float *> pull_result_ptr;
  fea_keys.reserve(MAX_FEASIGN_NUM / 100);
  pull_result_ptr.reserve(MAX_FEASIGN_NUM / 100);
  std::vector<float> init_value(fea_dim, 0);
  framework::LoDTensor *output = nullptr;
  float *output_data = nullptr;
  size_t output_index = -1;
  size_t output_len = 0;
  for (size_t index = 0; index < inputs->size(); ++index) {
    const framework::LoDTensor *tensor = inputs->at(index);
    const int64_t *ids = tensor->data<int64_t>();
    size_t len = tensor->numel();
    for (size_t i = 0; i < len; ++i, output_len += fea_dim) {
      if (!output || output_len == size_t(output->numel())) {
        ++output_index;
        CHECK(output_index < outputs->size());  // NOLINT
        output = outputs->at(output_index);
        output->set_lod(tensor->lod());
        output_data = output->mutable_data<float>(place);
        output_len = 0;
        CHECK(output->numel() % fea_dim == 0);  // NOLINT
        CHECK(output_data != nullptr);          // NOLINT
      }
      uint64_t real_id = static_cast<uint64_t>(ids[i]);
      if (real_id == padding_id) {
        memcpy(output_data + output_len, init_value.data(),
               sizeof(float) * fea_dim);
        continue;
      }
      fea_keys.push_back(real_id);
      pull_result_ptr.push_back(output_data + output_len);
    }
  }
  auto status =
      _worker_ptr->pull_sparse(pull_result_ptr.data(), table_id,
                               fea_keys.data(), fea_keys.size(), is_training);
  status.wait();
  auto ret = status.get();
  if (ret != 0) {
    LOG(ERROR) << "fleet pull sparse failed, status[" << ret << "]";
    sleep(sleep_seconds_before_fail_exit_);
  }
}

void AsyncCommunicator::PushSparseFromTensorAsync(
    const uint64_t table_id, int fea_dim, uint64_t padding_id,
    platform::Place place, std::vector<const framework::LoDTensor *> *inputs,
    const framework::LoDTensor *shows, const framework::LoDTensor *clks,
    std::vector<framework::LoDTensor *> *outputs) {
  int batch_size = -1;
  bool batch_size_consist = true;
  for (auto *input : *inputs) {
    int cur_batch_size =
        input->lod().size() ? input->lod()[0].size() - 1 : input->dims()[0];
    if (batch_size == -1) {
      batch_size = cur_batch_size;
    } else {
      // CHECK(batch_size == cur_batch_size);  // NOLINT
      batch_size_consist = false;
      break;
    }
  }
  CHECK(batch_size > 0);  // NOLINT

  int show_size =
      shows->lod().size() ? shows->lod()[0].size() - 1 : shows->dims()[0];
  CHECK(show_size == batch_size || show_size == 1);
  int clk_size =
      clks->lod().size() ? clks->lod()[0].size() - 1 : clks->dims()[0];
  CHECK(clk_size == batch_size || clk_size == 1);

  CHECK(outputs->size() == inputs->size());
  std::vector<uint64_t> push_keys;
  push_keys.reserve(MAX_FEASIGN_NUM / 100);
  std::vector<std::vector<float>> push_values;
  push_values.reserve(MAX_FEASIGN_NUM / 100);
  size_t output_len = 0;
  size_t input_idx = 0;

  VLOG(2) << "fleet.cc::emb_dim: " << fea_dim;

  // TODO(zhaocaibei123): check type of show/clk is int? float? uint64?
  // const long int* show_tensor = shows->data<int64_t>();
  // const long int* clk_tensor = clks->data<int64_t>();
  const int64_t *show_tensor = shows->data<int64_t>();
  const int64_t *clk_tensor = clks->data<int64_t>();

  for (size_t index = 0; index < inputs->size(); ++index) {
    framework::LoDTensor *g_tensor = outputs->at(index);
    float *g = g_tensor->data<float>();
    // no cvm
    if (batch_size_consist) {  // TODO(zhaocaibei123): add config
                               // scale_sparse_gradient_with_batch_size_
      Eigen::Map<
          Eigen::Matrix<float, Eigen::Dynamic, Eigen::Dynamic, Eigen::RowMajor>>
          g_mat(g, g_tensor->numel() / fea_dim, fea_dim);
      g_mat.rightCols(fea_dim) *= batch_size;
    }

    const framework::LoDTensor *tensor = inputs->at(index);
    const int64_t *ids = tensor->data<int64_t>();
    size_t len = tensor->numel();
    output_len = 0;

    if (tensor->lod().size() > 0) {
      for (size_t i = 0; i < tensor->lod()[0].size() - 1; ++i) {
        for (int j = tensor->lod()[0][i]; j < tensor->lod()[0][i + 1];
             ++j, output_len += fea_dim) {
          uint64_t real_id = static_cast<uint64_t>(ids[j]);
          if (real_id == padding_id) {
            continue;
          }
          push_keys.emplace_back(real_id);
          push_values.emplace_back(fea_dim + 3);
          // slot show clk grad... consistent with CtrCommonPushValue defined in
          // ctr_accessor.h
          push_values.back()[0] = 2;  // TODO(zhaocaibei123): slot
          push_values.back()[1] =
              (i >= show_size ? 1 : static_cast<float>(show_tensor[i]));
          push_values.back()[2] =
              (i >= clk_size ? 0 : static_cast<float>(clk_tensor[i]));

          float *data = push_values.back().data() + 3;

          memcpy(data, g + output_len, sizeof(float) * fea_dim);

          ++input_idx;
        }
      }
    } else {
      for (size_t i = 0; i < len; ++i, output_len += fea_dim) {
        uint64_t real_id = static_cast<uint64_t>(ids[i]);
        if (real_id == padding_id) {
          continue;
        }
        push_keys.emplace_back(real_id);
        push_values.emplace_back(fea_dim + 3);
        // slot show clk grad... consistent with CtrCommonPushValue defined in
        // ctr_accessor.h
        push_values.back()[0] = 2;  // TODO(zhaocaibei123): slot
        push_values.back()[1] =
            (i >= show_size ? 1 : static_cast<float>(show_tensor[i]));
        push_values.back()[2] =
            (i >= clk_size ? 0 : static_cast<float>(clk_tensor[i]));

        float *data = push_values.back().data() + 3;

        memcpy(data, g + output_len, sizeof(float) * fea_dim);

        ++input_idx;
      }
    }
    CHECK(output_len == g_tensor->numel());
  }

  std::vector<float *> push_g_vec(input_idx, nullptr);

  for (auto i = 0u; i < push_keys.size(); ++i) {
    push_g_vec[i] = push_values.at(i).data();
  }

  PADDLE_ENFORCE_EQ(
      this->Check(table_id), true,
      platform::errors::InvalidArgument(
          "can not find table: %s, please check your config", table_id));
  auto status = _worker_ptr->push_sparse(table_id, push_keys.data(),
                                         (const float **)push_g_vec.data(),
                                         push_keys.size());
}

T
tangwei12 已提交
756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820
void HalfAsyncCommunicator::MainThread() {
  VLOG(3) << "HalfAsyncCommunicator MainThread start and wait";

  while (waiting_ && running_) {
    std::this_thread::sleep_for(std::chrono::milliseconds(100));
    VLOG(3) << "wait for running";
  }

  while (running_) {
    SendByCommunicator();
    BarrierSend();
    RecvByCommunicator();
    BarrierRecv();
    BarrierWeakUp();
  }
  VLOG(1) << "communicator stopped, send thread exit";
}

void AsyncCommunicator::InitImpl(const RpcCtxMap &send_varname_to_ctx,
                                 const RecvCtxMap &recv_varname_to_ctx,
                                 Scope *recv_scope) {
  send_varname_to_ctx_ = std::move(send_varname_to_ctx);
  recv_varname_to_ctx_ = std::move(recv_varname_to_ctx);
  recv_scope_ = std::move(recv_scope);
  send_scope_.reset(new Scope());
  xpu_temp_scope_.reset(new Scope());
  for (auto &iter : send_varname_to_ctx_) {
    auto &ctx = iter.second;
    auto &varnames = ctx.origin_varnames;
    for (auto &var_name : varnames) {
      send_varname_to_queue_[var_name] =
          std::make_shared<BlockingQueue<std::shared_ptr<Variable>>>(
              send_queue_size_);
    }
  }
  send_threadpool_.reset(new ::ThreadPool(thread_pool_size_));
}

AsyncCommunicator::~AsyncCommunicator() {
  running_ = false;
  if (main_thread_) main_thread_->join();
  if (recv_thread_) recv_thread_->join();
}

void AsyncCommunicator::Start() {
  VLOG(1) << "Communicator start";
  if (!communicator_) {
    VLOG(0) << "Communicator is not inited, do nothing";
  } else {
    VLOG(1) << "start send thread and recv thread";
    waiting_ = true;
    running_ = true;
    // flushing_ = false;
    BarrierTriggerReset(max_merge_var_num_);
    // start send and recv thread
    main_thread_.reset(
        new std::thread(std::bind(&AsyncCommunicator::MainThread, this)));
    if (independent_recv_) {
      recv_thread_.reset(
          new std::thread(std::bind(&AsyncCommunicator::RecvThread, this)));
    }
  }
}

void AsyncCommunicator::Stop() {
Z
zhaocaibei123 已提交
821
  VLOG(1) << "Communicator stop begin";
T
tangwei12 已提交
822 823 824 825
  running_ = false;
  if (!communicator_) {
    VLOG(0) << "Communicator is not inited, do nothing";
  } else {
Z
zhaocaibei123 已提交
826 827
    _worker_ptr->finalize_worker();
    VLOG(1) << "client finalize_worker done";
T
tangwei12 已提交
828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847
    if (recv_thread_) {
      VLOG(1) << "stop recv thread";
      recv_thread_->join();
      recv_thread_.reset(nullptr);
    }
    if (main_thread_) {
      VLOG(1) << "stop main thread";
      main_thread_->join();
      main_thread_.reset(nullptr);
    }
  }
  VLOG(1) << "Communicator stop done";
}

bool AsyncCommunicator::Check(const std::vector<std::string> &var_tables) {
  PADDLE_ENFORCE_EQ(
      var_tables.size(), 1,
      platform::errors::InvalidArgument("var_tables.size() == 1 is permitted"));

  auto table_name = var_tables[0];
848
  if (send_varname_to_ctx_.find(table_name) == send_varname_to_ctx_.end()) {
T
tangwei12 已提交
849
    return false;
850 851 852 853 854 855 856 857 858 859
  }
  if (table_name == STEP_COUNTER) {
    VLOG(3) << "send step_counter into queue";
    auto tmp_var = std::make_shared<Variable>();
    auto *tensor = tmp_var->GetMutable<framework::LoDTensor>();
    tensor->Resize(framework::make_ddim({1}));
    auto *out_d = tensor->mutable_data<int64_t>(platform::CPUPlace());
    out_d[0] = 1;
    send_varname_to_queue_[table_name]->Push(tmp_var);
  }
T
tangwei12 已提交
860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996
  return true;
}

bool AsyncCommunicator::Check(const int table_id) {
  for (auto &iter : send_varname_to_ctx_) {
    auto &ctx = iter.second;
    if (ctx.table_id == table_id) return true;
  }
  return false;
}

void AsyncCommunicator::Send(const std::vector<std::string> &var_names,
                             const framework::Scope &scope) {
  waiting_ = false;
  for (size_t i = 0; i < var_names.size(); i++) {
    auto *var = scope.FindVar(var_names[i]);
    auto tmp_grad_var = std::make_shared<Variable>();
    framework::CopyVariable(*var, tmp_grad_var.get());
    send_varname_to_queue_[var_names[i]]->Push(tmp_grad_var);
  }
}

void HalfAsyncCommunicator::Clean() {
  for (auto &iter : send_varname_to_queue_) {
    auto &var_name = iter.first;
    auto &var_queue = iter.second;

    while (var_queue->Size() > 0) {
      var_queue->Pop();
    }

    VLOG(3) << "clean var: " << var_name << " done";
  }
}

void HalfAsyncCommunicator::BarrierTriggerDecrement() {
  barrier_trigger_--;
  VLOG(3) << "BarrierTriggerDecrement decrement barrier trigger to "
          << barrier_trigger_.load();
}

void HalfAsyncCommunicator::BarrierTriggerReset(int initial_val) {
  barrier_trigger_.store(initial_val);

  VLOG(3) << "BarrierTriggerReset reset barrier trigger to "
          << barrier_trigger_.load();
}

void HalfAsyncCommunicator::Barrier() {
  barrier_counter_++;

  if (!running_) {
    VLOG(3) << "Communicator is not running, release barrier";
    return;
  }

  {
    std::unique_lock<std::mutex> lk(barrier_mutex_);
    barrier_cond_.wait(lk, [this] { return (barrier_counter_ == 0); });
  }
}

int HalfAsyncCommunicator::BatchesCounter() {
  while (running_) {
    if (barrier_counter_.load() >= barrier_trigger_.load() &&
        barrier_trigger_.load() != 0) {
      break;
    } else {
      std::this_thread::sleep_for(std::chrono::milliseconds(10));
    }
  }

  return barrier_counter_.load();
}

void HalfAsyncCommunicator::SendByCommunicator() {
  int batches = BatchesCounter();
  VLOG(1) << "HalfAsyncCommunicator::BatchesCounter = " << batches;
  if (batches <= 0) return;

  std::vector<std::future<void>> tasks;
  tasks.reserve(send_varname_to_ctx_.size());

  for (auto &iter : send_varname_to_ctx_) {
    auto &ctx = iter.second;
    auto send_recv_task = [this, &ctx, batches] {
      auto &varnames = ctx.origin_varnames;
      auto &table_id = ctx.table_id;
      size_t var_nums = varnames.size();

      std::vector<std::vector<std::shared_ptr<Variable>>> vars;
      vars.resize(var_nums);
      for (size_t i = 0; i < var_nums; i++) {
        auto &var_name = varnames[i];
        auto &var_queue = send_varname_to_queue_[var_name];
        for (int j = 0; j < batches; j++) vars[i].push_back(var_queue->Pop());
        MergeVars<float>(var_name, vars[i], send_scope_.get(), 1);
      }

      if (ctx.is_sparse) {
        PADDLE_ENFORCE_EQ(
            varnames.size(), 1,
            platform::errors::InvalidArgument(
                "sparse variables can only be merged by one variables"));
        RpcSendSparse(varnames[0], table_id, *send_scope_);
      } else {
        RpcSendDense(ctx, *send_scope_);
      }
    };
    tasks.emplace_back(send_threadpool_->enqueue(std::move(send_recv_task)));
  }
  for (auto &task : tasks) {
    task.wait();
  }
  return;
}

void HalfAsyncCommunicator::BarrierWeakUp() {
  barrier_counter_.store(0);
  barrier_cond_.notify_all();
}

void SyncCommunicator::BarrierSend() {
  if (!running_) return;
  BarrierWithTable(0);
  VLOG(4) << "BarrierSend with SyncCommunicator";
}

void SyncCommunicator::BarrierRecv() {
  if (!running_) return;
  BarrierWithTable(1);

  VLOG(4) << "BarrierRecv with SyncCommunicator";
}

void GeoCommunicator::Send(const std::vector<std::string> &var_names,
                           const framework::Scope &scope) {
C
Chengmo 已提交
997
  platform::RecordEvent record_event("GeoCommunicator->Send");
T
tangwei12 已提交
998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014
  waiting_ = false;
  auto before_send = GetCurrentUS();
  auto table_name = var_names[0];

  size_t splited_var_nums =
      send_varname_to_ctx_[table_name].splited_varnames.size();

  std::unordered_map<std::string, std::unordered_set<int64_t>> ids_table;

  for (size_t j = 0; j < splited_var_nums; j++) {
    ids_table.insert(std::pair<std::string, std::unordered_set<int64_t>>(
        send_varname_to_ctx_[table_name].splited_varnames[j],
        std::unordered_set<int64_t>()));
  }

  auto *var = scope.FindVar(table_name);

1015
  PADDLE_ENFORCE_EQ(var->IsType<pten::SelectedRows>(), true,
T
tangwei12 已提交
1016 1017
                    platform::errors::InvalidArgument(
                        "Only need to send Sparse Grad in Geo mode."));
1018
  auto &rows = var->Get<pten::SelectedRows>().rows();
T
tangwei12 已提交
1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098

  // insert ids which has not been record
  for (size_t j = 0; j < rows.size(); j++) {
    auto ep_idx = rows[j] % splited_var_nums;
    ids_table.at(send_varname_to_ctx_[table_name].splited_varnames[ep_idx])
        .insert(rows[j]);
  }

  for (auto &iter : ids_table) {
    auto &key = iter.first;
    auto &sparse_ids_set = iter.second;
    auto sparse_ids_vec = std::make_shared<std::vector<int64_t>>();
    sparse_ids_vec->assign(sparse_ids_set.begin(), sparse_ids_set.end());
    sparse_id_queues_.at(key)->Push(sparse_ids_vec);
    VLOG(3) << "push " << sparse_ids_vec->size() << " ids to " << key
            << "'s queue";
  }

  auto after_send = GetCurrentUS();
  VLOG(2) << "run send op finish. use time " << (after_send - before_send);
}

void GeoCommunicator::InitImpl(const RpcCtxMap &send_varname_to_ctx,
                               const RecvCtxMap &recv_varname_to_ctx,
                               Scope *recv_scope) {
  send_varname_to_ctx_ = std::move(send_varname_to_ctx);
  recv_varname_to_ctx_ = std::move(recv_varname_to_ctx);
  recv_scope_ = std::move(recv_scope);

  PADDLE_ENFORCE_GT(
      send_varname_to_ctx.size(), 0,
      platform::errors::InvalidArgument("send var contexts can not be zero"));

  for (auto &iter : send_varname_to_ctx_) {
    auto &ctx = iter.second;
    if (!ctx.is_sparse) continue;
    auto &varnames = ctx.origin_varnames;
    PADDLE_ENFORCE_EQ(
        varnames.size(), 1,
        platform::errors::InvalidArgument(
            "sparse variables can only be merged by one variables"));
    for (auto &splited_var : ctx.splited_varnames) {
      parallel_task_nums_ += 1;
      sparse_id_queues_.insert(
          std::pair<std::string, std::shared_ptr<BlockingQueue<
                                     std::shared_ptr<std::vector<int64_t>>>>>(
              splited_var,
              std::make_shared<
                  BlockingQueue<std::shared_ptr<std::vector<int64_t>>>>(
                  send_queue_size_)));
    }
  }

  send_threadpool_.reset(new ::ThreadPool(thread_pool_size_));

  delta_scope_.reset(new Scope());
  old_scope_.reset(new Scope());
  pserver_scope_.reset(new Scope());
}

void GeoCommunicator::InitParams(const RecvCtxMap &recv_varname_to_ctx) {
  std::vector<std::future<void>> tasks;
  tasks.reserve(recv_varname_to_ctx_.size());

  for (auto &iter : recv_varname_to_ctx_) {
    auto &table_id = iter.first;
    auto &varnames = iter.second;

    auto recv_task = [this, &table_id, &varnames] {
      InitDense(varnames, table_id);
    };
    tasks.emplace_back(send_threadpool_->enqueue(std::move(recv_task)));
  }

  for (auto &task : tasks) {
    task.wait();
  }

  for (auto &iter : send_varname_to_ctx_) {
    auto &ctx = iter.second;
T
tangwei12 已提交
1099
    if (!ctx.is_sparse) continue;
T
tangwei12 已提交
1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112
    auto &varname = ctx.origin_varnames[0];
    auto &table_id = ctx.table_id;
    auto param = varname.substr(0, varname.size() - 5);
    InitSparse(param, table_id);
  }
  return;
}

void GeoCommunicator::InitDense(std::vector<std::string> &varnames,
                                int table_id) {
  if (trainer_id_ == 0) {
    RpcSendDenseParam(varnames, table_id, *recv_scope_);
    BarrierWithTable(1);
T
tangwei12 已提交
1113
    VLOG(1) << "push dense param to table " << table_id
T
tangwei12 已提交
1114 1115 1116 1117
            << " from 0' trainer done";
  } else {
    BarrierWithTable(1);
    RpcRecvDense(varnames, table_id, recv_scope_);
T
tangwei12 已提交
1118
    VLOG(1) << "pull dense param to table " << table_id
T
tangwei12 已提交
1119 1120 1121 1122 1123 1124 1125 1126 1127 1128
            << " from 0' trainer done";
  }

  // copy to old_scope
  for (auto &t : varnames) {
    auto *global_var = recv_scope_->FindVar(t);
    global_var->GetMutable<framework::LoDTensor>();
    auto *old_var = old_scope_->Var(t);
    old_var->GetMutable<framework::LoDTensor>();
    framework::CopyVariable(*global_var, old_var);
Z
zhaocaibei123 已提交
1129 1130 1131 1132
    // init pserver_scope_
    auto *pserver_var = pserver_scope_->Var(t);
    pserver_var->GetMutable<framework::LoDTensor>();
    framework::CopyVariable(*global_var, pserver_var);
T
tangwei12 已提交
1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215
  }
  VLOG(1) << "init dense table " << table_id << " done";
}

void GeoCommunicator::SendDense(const CommContext &send_ctx) {
  platform::RecordEvent record_event("GeoCommunicator->SendDense");
  auto &var_names = send_ctx.origin_varnames;
  auto &table_id = send_ctx.table_id;
  for (auto &varname : var_names) {
    auto param_name = GradToParam(varname);
    auto *var_latest = recv_scope_->FindVar(param_name);
    auto *var_timestamp = old_scope_->FindVar(param_name);

    PADDLE_ENFORCE_EQ(var_latest->IsInitialized(), true,
                      platform::errors::Unavailable(
                          "%s is not initialized, please check", param_name));
    PADDLE_ENFORCE_EQ(var_timestamp->IsInitialized(), true,
                      platform::errors::Unavailable(
                          "%s is not initialized, please check", param_name));

    auto &t_latest = var_latest->Get<framework::LoDTensor>();
    auto t_timestamp = var_timestamp->GetMutable<framework::LoDTensor>();

    auto cpu_ctx = paddle::platform::CPUDeviceContext();
    auto *var_delta = delta_scope_->Var(varname);
    auto *t_delta = var_delta->GetMutable<framework::LoDTensor>();
    t_delta->mutable_data<float>(t_latest.dims(), cpu_ctx.GetPlace());

    auto blas =
        paddle::operators::math::GetBlas<platform::CPUDeviceContext, float>(
            cpu_ctx);
    blas.VSUB(t_latest.numel(), t_latest.data<float>(),
              t_timestamp->data<float>(), t_delta->data<float>());

    float coefficient = 1.0 / static_cast<float>(trainers_);
    blas.SCAL(t_latest.numel(), coefficient, t_delta->data<float>());

    blas.VADD(t_latest.numel(), t_timestamp->data<float>(),
              t_delta->data<float>(), t_timestamp->data<float>());
  }
  RpcSendDense(send_ctx, *delta_scope_);
  VLOG(1) << "Finish Send Dense " << var_names[0] << ", table_id: " << table_id;
  return;
}

void GeoCommunicator::RecvDense(const CommContext &send_ctx) {
  platform::RecordEvent record_event("GeoCommunicator->RecvDense");
  auto &table_id = send_ctx.table_id;
  auto &varnames = recv_varname_to_ctx_.at(table_id);
  // 1. recv from pserver
  RpcRecvDense(varnames, table_id, pserver_scope_.get());

  // 2.1 pserver - old => delta; 2.2 latest + old => latest 2.3 old => pserver
  auto cpu_ctx = paddle::platform::CPUDeviceContext();
  for (auto &varname : varnames) {
    auto *var_latest = recv_scope_->FindVar(varname);
    auto t_latest = var_latest->GetMutable<framework::LoDTensor>();

    auto *var_old = old_scope_->FindVar(varname);
    auto t_old = var_old->GetMutable<framework::LoDTensor>();

    auto *var_pserver = pserver_scope_->FindVar(varname);
    auto t_pserver = var_pserver->Get<framework::LoDTensor>();

    auto *var_delta = delta_scope_->Var(varname);
    auto *t_delta = var_delta->GetMutable<framework::LoDTensor>();
    t_delta->mutable_data<float>(t_latest->dims(), cpu_ctx.GetPlace());

    auto blas =
        paddle::operators::math::GetBlas<platform::CPUDeviceContext, float>(
            cpu_ctx);
    blas.VSUB(t_latest->numel(), t_pserver.data<float>(), t_old->data<float>(),
              t_delta->data<float>());
    blas.VADD(t_latest->numel(), t_latest->data<float>(),
              t_delta->data<float>(), t_latest->data<float>());
    blas.VCOPY(t_latest->numel(), t_pserver.data<float>(),
               t_old->data<float>());
  }
  VLOG(1) << "Finish Recv Dense " << varnames[0] << ", table_id: " << table_id;
  return;
}

void GeoCommunicator::InitSparse(const std::string &var_name, int table_id) {
T
tangwei12 已提交
1216
  VLOG(1) << "Init Sparse " << var_name << " : table " << table_id << " begin.";
T
tangwei12 已提交
1217 1218 1219
  if (trainer_id_ == 0) {
    RpcSendSparseParam(var_name, table_id, *recv_scope_);
    BarrierWithTable(1);
T
tangwei12 已提交
1220
    VLOG(1) << "push sparse param to table " << table_id
T
tangwei12 已提交
1221 1222 1223 1224
            << " from 0' trainer done";
  } else {
    BarrierWithTable(1);
    RpcRecvSparse(var_name, table_id, recv_scope_);
T
tangwei12 已提交
1225
    VLOG(1) << "pull sparse param to table " << table_id
T
tangwei12 已提交
1226 1227 1228
            << " from 0' trainer done";
  }

T
tangwei12 已提交
1229
  VLOG(1) << "Init Sparse " << var_name << " : table " << table_id << " done.";
T
tangwei12 已提交
1230 1231 1232 1233 1234 1235 1236 1237
  auto *global_var = recv_scope_->FindVar(var_name);
  auto *var = old_scope_->Var(var_name);
  framework::CopyVariable(*global_var, var);
  return;
}

std::vector<int64_t> GeoCommunicator::MergeSparseIds(
    const std::string &send_varname) {
C
Chengmo 已提交
1238
  platform::RecordEvent record_event("GeoCommunicator->MergeSparseIds");
T
tangwei12 已提交
1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292
  size_t merge_num = 0, wait_times = 0;
  std::unordered_set<int64_t> sparse_ids;
  while (merge_num < static_cast<size_t>(max_merge_var_num_)) {
    VLOG(3) << "Merge Number of " << send_varname << " = " << merge_num;
    if (sparse_id_queues_.at(send_varname)->Size() > 0) {
      wait_times = 0;
      std::shared_ptr<std::vector<int64_t>> pop_ids =
          sparse_id_queues_.at(send_varname)->Pop();
      for (size_t j = 0; j < pop_ids->size(); j++) {
        sparse_ids.insert(pop_ids->at(j));
      }
      merge_num += 1;
      VLOG(3) << "sparse_id_queues_(" << send_varname << ") pushed";
    } else if (sparse_id_queues_.at(send_varname)->Size() == 0) {
      VLOG(3) << "wait_times -> " << wait_times;
      if (wait_times >= static_cast<size_t>(send_wait_times_)) {
        break;
      }
      std::this_thread::sleep_for(std::chrono::milliseconds(10));
      wait_times++;
      continue;
    }
  }
  std::vector<int64_t> res;
  res.assign(sparse_ids.begin(), sparse_ids.end());
  return res;
}

void GeoCommunicator::SendSparse(const std::string &varname,
                                 std::vector<int64_t> &sparse_ids, int table_id,
                                 int ep_idx) {
  platform::RecordEvent record_event("GeoCommunicator->SendSparse");
  std::string param_name = SplitedGradToParam(varname);
  VLOG(1) << "In GeoCommunicator::SendSparse(" << varname << " " << param_name
          << ", ids.size = " << sparse_ids.size() << ", table_id: " << table_id
          << ", ep_idx: " << ep_idx;

  auto *var_latest = recv_scope_->FindVar(param_name);
  auto *var_old = old_scope_->FindVar(param_name);

  PADDLE_ENFORCE_EQ(var_latest->IsInitialized(), true,
                    platform::errors::Unavailable(
                        "%s is not initialized, please check", param_name));
  PADDLE_ENFORCE_EQ(var_old->IsInitialized(), true,
                    platform::errors::Unavailable(
                        "%s is not initialized, please check", param_name));

  auto &t_latest = var_latest->Get<framework::LoDTensor>();
  auto *t_old = var_old->GetMutable<framework::LoDTensor>();

  auto dims1 = t_latest.dims()[1];
  auto cpu_ctx = paddle::platform::CPUDeviceContext();

  auto *var_delta = delta_scope_->Var(varname);
1293
  auto *t_delta = var_delta->GetMutable<pten::SelectedRows>();
T
tangwei12 已提交
1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320
  auto *var_t_value = t_delta->mutable_value();
  var_t_value->Resize({static_cast<int64_t>(sparse_ids.size()), dims1});
  auto *t_value = var_t_value->mutable_data<float>(cpu_ctx.GetPlace());

  t_delta->set_rows(sparse_ids);
  t_delta->set_height(t_latest.dims()[0]);

  auto blas =
      paddle::operators::math::GetBlas<platform::CPUDeviceContext, float>(
          cpu_ctx);
  float coefficient = 1.0 / static_cast<float>(trainers_);

  std::vector<float *> push_g_vec;
  for (auto j = 0; j < static_cast<int>(sparse_ids.size()); ++j) {
    blas.VSUB(dims1, t_latest.data<float>() + sparse_ids[j] * dims1,
              t_old->data<float>() + sparse_ids[j] * dims1,
              t_value + j * dims1);
    blas.SCAL(dims1, coefficient, t_value + j * dims1);
    blas.VADD(dims1, t_old->data<float>() + sparse_ids[j] * dims1,
              t_value + j * dims1,
              t_old->data<float>() + sparse_ids[j] * dims1);
    push_g_vec.push_back(t_value + j * dims1);
  }

  ++_async_call_num;
  DownpourBrpcClosure *closure = new DownpourBrpcClosure(1, [this](void *done) {
    int ret = 0;
1321
    auto *closure = (DownpourBrpcClosure *)done;  // NOLINT
T
tangwei12 已提交
1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433
    if (closure->check_response(0, PS_PUSH_SPARSE_TABLE) != 0) {
      ret = -1;
    }
    closure->set_promise_value(ret);
    --_async_call_num;
  });
  auto status = _worker_ptr->push_sparse_raw_gradient_partial(
      table_id, (const uint64_t *)sparse_ids.data(),
      (const float **)push_g_vec.data(), sparse_ids.size(), closure, ep_idx);
  status.wait();

  VLOG(1) << "Finish Send Sparse " << varname
          << ", ids.size = " << sparse_ids.size() << ", table_id: " << table_id;
  return;
}

void GeoCommunicator::RecvSparse(const std::string &varname, int table_id,
                                 int ep_idx) {
  platform::RecordEvent record_event("GeoCommunicator->RecvSparse");
  // 1. recv from pserver
  std::vector<uint64_t> keys;
  std::vector<float> values;
  auto status = _worker_ptr->pull_geo_param(table_id, &values, &keys, ep_idx);
  status.wait();

  std::string param = SplitedGradToParam(varname);
  VLOG(1) << "RecvSparse receive var: " << varname << " " << param << ", "
          << table_id << "; ids Size: " << keys.size()
          << "; values size: " << values.size();

  auto *var_latest = recv_scope_->FindVar(param);
  auto *var_old = old_scope_->FindVar(param);

  auto *t_latest = var_latest->GetMutable<framework::LoDTensor>();
  auto *t_old = var_old->GetMutable<framework::LoDTensor>();

  auto dims1 = t_latest->dims()[1];
  auto numel = keys.size() * dims1;

  std::vector<float> v_delta;
  v_delta.resize(numel);

  auto cpu_ctx = paddle::platform::CPUDeviceContext();
  auto blas =
      paddle::operators::math::GetBlas<platform::CPUDeviceContext, float>(
          cpu_ctx);

  for (auto j = 0; j < static_cast<int>(keys.size()); ++j) {
    float *latest_data = t_latest->data<float>() + keys[j] * dims1;
    float *old_data = t_old->data<float>() + keys[j] * dims1;
    // pserver - old => delta
    blas.VSUB(dims1, values.data() + j * dims1, old_data,
              v_delta.data() + j * dims1);
    // latest + delta => latest
    blas.VADD(dims1, latest_data, v_delta.data() + j * dims1, latest_data);
    // pserver => old
    blas.VCOPY(dims1, values.data() + j * dims1, old_data);
  }
  VLOG(1) << "Finish Recv Sparse " << param << ", table_id: " << table_id;
}

void GeoCommunicator::MainThread() {
  VLOG(3) << "MainThread start and wait";

  while (waiting_ && running_) {
    std::this_thread::sleep_for(std::chrono::milliseconds(100));
    VLOG(3) << "wait for running";
  }

  while (running_) {
    std::vector<std::future<void>> tasks;
    tasks.reserve(parallel_task_nums_);

    for (auto &iter : send_varname_to_ctx_) {
      auto &ctx = iter.second;
      auto &varnames = ctx.origin_varnames;
      auto &table_id = ctx.table_id;

      if (ctx.is_sparse) {
        PADDLE_ENFORCE_EQ(
            varnames.size(), 1,
            platform::errors::InvalidArgument(
                "sparse variables can only be merged by one variables"));
        int pserver_num = static_cast<int>(ctx.epmap.size());
        for (int ep_idx = 0; ep_idx < pserver_num; ep_idx++) {
          // varname: emb@GRAD, param_name: emb, splited_varname: emb.delta0
          auto send_recv_task = [this, table_id, ep_idx, &ctx] {
            auto splited_varname = ctx.splited_varnames[ep_idx];
            auto sparse_ids = MergeSparseIds(splited_varname);
            SendSparse(splited_varname, sparse_ids, table_id, ep_idx);
            RecvSparse(splited_varname, table_id, ep_idx);
          };
          tasks.emplace_back(
              send_threadpool_->enqueue(std::move(send_recv_task)));
        }
      } else {
        auto send_recv_task = [this, &ctx] {
          SendDense(ctx);
          RecvDense(ctx);
        };
        tasks.emplace_back(
            send_threadpool_->enqueue(std::move(send_recv_task)));
      }
    }
    for (auto &task : tasks) {
      task.wait();
    }
  }
}

}  // namespace distributed
}  // namespace paddle