pybind.cc 38.6 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

7
http://www.apache.org/licenses/LICENSE-2.0
8 9 10 11 12 13

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
L
lgone2000 已提交
14
#include <Python.h>
C
chengduoZH 已提交
15 16
#include <algorithm>
#include <map>
S
sneaxiy 已提交
17
#include <memory>
C
chengduoZH 已提交
18 19 20 21 22
#include <mutex>  // NOLINT // for call_once
#include <string>
#include <unordered_map>
#include <utility>
#include <vector>
23

P
peizhilin 已提交
24 25 26 27 28 29 30
#if defined(_WIN32)
#define NOMINMAX
#define GLOG_NO_ABBREVIATED_SEVERITIES  // msvc conflict logging with windows.h
#define GOOGLE_GLOG_DLL_DECL
#include <Windows.h>
#endif

Y
Yi Wang 已提交
31 32 33
#include "paddle/fluid/framework/executor.h"
#include "paddle/fluid/framework/feed_fetch_method.h"
#include "paddle/fluid/framework/framework.pb.h"
34
#include "paddle/fluid/framework/ir/pass_builder.h"
Y
Yi Wang 已提交
35 36 37
#include "paddle/fluid/framework/lod_rank_table.h"
#include "paddle/fluid/framework/lod_tensor.h"
#include "paddle/fluid/framework/lod_tensor_array.h"
38
#include "paddle/fluid/framework/op_registry.h"
P
peizhilin 已提交
39
#ifndef _WIN32
Y
Yu Yang 已提交
40
#include "paddle/fluid/framework/parallel_executor.h"
P
peizhilin 已提交
41
#endif
Y
Yi Wang 已提交
42
#include "paddle/fluid/framework/prune.h"
Y
Refine  
Yu Yang 已提交
43
#include "paddle/fluid/framework/reader.h"
Y
Yi Wang 已提交
44
#include "paddle/fluid/framework/selected_rows.h"
X
Xin Pan 已提交
45
#include "paddle/fluid/framework/version.h"
D
dzhwinter 已提交
46
#include "paddle/fluid/operators/activation_op.h"
S
sneaxiy 已提交
47
#include "paddle/fluid/operators/reader/lod_tensor_blocking_queue.h"
Y
Yi Wang 已提交
48
#include "paddle/fluid/platform/enforce.h"
49
#include "paddle/fluid/platform/init.h"
Y
Yi Wang 已提交
50 51 52 53
#include "paddle/fluid/platform/place.h"
#include "paddle/fluid/platform/profiler.h"
#include "paddle/fluid/pybind/const_value.h"
#include "paddle/fluid/pybind/exception.h"
54 55
#include "paddle/fluid/pybind/protobuf.h"
#include "paddle/fluid/pybind/pybind.h"  // NOLINT
Y
Yu Yang 已提交
56
#include "paddle/fluid/pybind/recordio.h"
Y
Yi Wang 已提交
57
#include "paddle/fluid/pybind/tensor_py.h"
Y
Yu Yang 已提交
58

59
#include "paddle/fluid/string/to_string.h"
60

D
Dong Zhihong 已提交
61
#ifdef PADDLE_WITH_CUDA
P
peizhilin 已提交
62
#ifndef _WIN32
Y
Yi Wang 已提交
63
#include "paddle/fluid/operators/nccl/nccl_gpu_common.h"
P
peizhilin 已提交
64
#endif
Y
Yi Wang 已提交
65 66
#include "paddle/fluid/platform/cuda_profiler.h"
#include "paddle/fluid/platform/gpu_info.h"
D
Dong Zhihong 已提交
67 68
#endif

M
minqiyang 已提交
69 70
#include "pybind11/stl.h"

71 72 73 74
DEFINE_bool(reader_queue_speed_test_mode, false,
            "If set true, the queue.pop will only get data from queue but not "
            "remove the data from queue for speed testing");

Q
Qiao Longfei 已提交
75 76 77
// disable auto conversion to list in Python
PYBIND11_MAKE_OPAQUE(paddle::framework::LoDTensorArray);

78
namespace paddle {
79
namespace pybind {
80
bool IsCompiledWithCUDA() {
81
#ifndef PADDLE_WITH_CUDA
Q
qijun 已提交
82 83 84 85 86 87
  return false;
#else
  return true;
#endif
}

Y
update  
Yancey1989 已提交
88
bool IsCompiledWithDIST() {
Y
Yancey1989 已提交
89
#ifdef PADDLE_WITH_DISTRIBUTE
Y
update  
Yancey1989 已提交
90 91 92 93 94 95
  return true;
#else
  return false;
#endif
}

96 97
PYBIND11_PLUGIN(core) {
  py::module m("core", "C++ core of PaddlePaddle");
98

99 100 101 102
  // using framework in this function. Since it is inside a function, it will
  // not cause namespace pollution.
  using namespace paddle::framework;  // NOLINT

103
  BindException(&m);
Y
Yu Yang 已提交
104

105 106 107
  py::class_<Tensor>(m, "Tensor", py::buffer_protocol())
      .def_buffer(
          [](Tensor &self) -> py::buffer_info { return CastToPyBuffer(self); })
Y
yuyang18 已提交
108
      .def("_get_dims",
109
           [](const Tensor &self) { return vectorize(self.dims()); })
Y
yuyang18 已提交
110
      .def("_set_dims",
Q
qijun 已提交
111
           [](Tensor &self, const std::vector<int64_t> &dim) {
Y
Yu Yang 已提交
112
             self.Resize(make_ddim(dim));
Y
Yu Yang 已提交
113
           })
Y
yuyang18 已提交
114
      .def("_set_layout",
D
dzhwinter 已提交
115 116 117
           [](Tensor &self, const std::string &layout) {
             self.set_layout(StringToDataLayout(layout));
           })
Y
yuyang18 已提交
118
      .def("_alloc_float",
D
dzhwinter 已提交
119
           [](Tensor &self, paddle::platform::CUDAPlace &place) {
Q
qijun 已提交
120
             self.mutable_data<float>(place);
Y
Yu Yang 已提交
121
           })
Y
yuyang18 已提交
122
      .def("_alloc_float",
Y
Yu Yang 已提交
123
           [](Tensor &self, paddle::platform::CPUPlace &place) {
Q
qijun 已提交
124
             self.mutable_data<float>(place);
Y
Yu Yang 已提交
125
           })
Y
yuyang18 已提交
126
      .def("_alloc_int",
Y
Yu Yang 已提交
127
           [](Tensor &self, paddle::platform::CPUPlace &place) {
Q
qijun 已提交
128
             self.mutable_data<int>(place);
Y
Yu Yang 已提交
129
           })
Y
yuyang18 已提交
130
      .def("_alloc_int",
D
dzhwinter 已提交
131
           [](Tensor &self, paddle::platform::CUDAPlace &place) {
Q
qijun 已提交
132
             self.mutable_data<int>(place);
Q
qijun 已提交
133
           })
Y
yuyang18 已提交
134
      .def("_alloc_int",
C
chengduoZH 已提交
135 136 137
           [](Tensor &self, paddle::platform::CUDAPinnedPlace &place) {
             self.mutable_data<int>(place);
           })
Y
yuyang18 已提交
138
      .def("_alloc_float",
C
chengduoZH 已提交
139 140 141
           [](Tensor &self, paddle::platform::CUDAPinnedPlace &place) {
             self.mutable_data<float>(place);
           })
Y
Yu Yang 已提交
142 143
      .def("set", PyCPUTensorSetFromArray<float>)
      .def("set", PyCPUTensorSetFromArray<int>)
144
      .def("set", PyCPUTensorSetFromArray<double>)
145
      .def("set", PyCPUTensorSetFromArray<int64_t>)
Y
Yu Yang 已提交
146
      .def("set", PyCPUTensorSetFromArray<bool>)
147
      .def("set", PyCPUTensorSetFromArray<uint16_t>)
F
fengjiayi 已提交
148
      .def("set", PyCPUTensorSetFromArray<uint8_t>)
Q
qingqing01 已提交
149
      .def("set", PyCPUTensorSetFromArray<int8_t>)
150
#ifdef PADDLE_WITH_CUDA
Y
Yu Yang 已提交
151 152
      .def("set", PyCUDATensorSetFromArray<float>)
      .def("set", PyCUDATensorSetFromArray<int>)
153
      .def("set", PyCUDATensorSetFromArray<double>)
154
      .def("set", PyCUDATensorSetFromArray<int64_t>)
Y
Yu Yang 已提交
155
      .def("set", PyCUDATensorSetFromArray<bool>)
156
      .def("set", PyCUDATensorSetFromArray<uint16_t>)
F
fengjiayi 已提交
157
      .def("set", PyCUDATensorSetFromArray<uint8_t>)
Q
qingqing01 已提交
158
      .def("set", PyCUDATensorSetFromArray<int8_t>)
C
chengduoZH 已提交
159 160 161 162 163 164
      .def("set", PyCUDAPinnedTensorSetFromArray<float>)
      .def("set", PyCUDAPinnedTensorSetFromArray<int>)
      .def("set", PyCUDAPinnedTensorSetFromArray<double>)
      .def("set", PyCUDAPinnedTensorSetFromArray<int64_t>)
      .def("set", PyCUDAPinnedTensorSetFromArray<bool>)
      .def("set", PyCUDAPinnedTensorSetFromArray<uint16_t>)
F
fengjiayi 已提交
165
      .def("set", PyCUDAPinnedTensorSetFromArray<uint8_t>)
Q
qingqing01 已提交
166
      .def("set", PyCUDAPinnedTensorSetFromArray<int8_t>)
Q
qijun 已提交
167
#endif
168
      .def("shape", [](Tensor &self) { return vectorize(self.dims()); })
Y
yuyang18 已提交
169 170 171 172 173
      .def("_set_float_element", TensorSetElement<float>)
      .def("_get_float_element", TensorGetElement<float>)
      .def("_set_double_element", TensorSetElement<double>)
      .def("_get_double_element", TensorGetElement<double>)
      .def("_dtype", [](Tensor &self) { return ToDataType(self.type()); });
Y
Yu Yang 已提交
174

X
Xin Pan 已提交
175 176 177 178 179 180 181 182 183 184 185 186 187
  py::class_<LoDTensor, Tensor>(m, "LoDTensor", R"DOC(
    LoDTensor is a Tensor with optional LoD information.

    np.array(lod_tensor) can convert LoDTensor to numpy array.
    lod_tensor.lod() can retrieve the LoD information.

    LoD is short for Level of Details and is usually used for varied sequence
    length. You can skip the following comment if you don't need optional LoD.

  For example:
     A LoDTensor X can look like the example below. It contains 2 sequences.
     The first has length 2 and the second has length 3, as described by x.lod.

X
fix doc  
Xin Pan 已提交
188
     The first tensor dimension 5=2+3 is calculated from LoD if it's available.
X
Xin Pan 已提交
189
     It means the total number of sequence element. In X, each element has 2
X
fix doc  
Xin Pan 已提交
190
     columns, hence [5, 2].
X
Xin Pan 已提交
191 192 193

      x.lod  = [[2, 3]]
      x.data = [[1, 2], [3, 4],
X
fix doc  
Xin Pan 已提交
194 195
                [5, 6], [7, 8], [9, 10]]
      x.shape = [5, 2]
X
Xin Pan 已提交
196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218

      LoD can have multiple levels (for example, a paragraph can have multiple
      sentences and a sentence can have multiple words). In the following
      LodTensor Y, the lod_level is 2. It means there are 2 sequence, the
      first sequence length is 2 (has 2 sub-sequences), the second one's
      length is 1. The first sequence's 2 sub-sequences have length 2 and 2,
      respectively. And the second sequence's 1 sub-sequence has length 3.

      y.lod = [[2 1], [2 2 3]]
      y.shape = [2+2+3, ...]

  Note:
      In above description, LoD is length-based. In Paddle internal
      implementation, lod is offset-based. Hence, internally,
      y.lod is represented as [[0, 2, 3], [0, 2, 4, 7]] (length-based
      equivlent would be [[2-0, 3-2], [2-0, 4-2, 7-4]]).

      Sometimes LoD is called recursive_sequence_length to be more
      self-explanatory. In this case, it must be length-based. Due to history
      reasons. when LoD is called lod in public API, it might be offset-based.
      Users should be careful about it.

        )DOC")
219 220
      .def_buffer(
          [](Tensor &self) -> py::buffer_info { return CastToPyBuffer(self); })
221 222 223 224 225 226 227 228 229 230 231 232 233 234
      .def("__init__",
           [](LoDTensor &instance, const std::vector<std::vector<size_t>>
                                       &recursive_sequence_lengths) {
             LoD new_lod;
             new_lod.reserve(recursive_sequence_lengths.size());
             std::copy(recursive_sequence_lengths.begin(),
                       recursive_sequence_lengths.end(),
                       std::back_inserter(new_lod));
             LoD new_offset_lod = ConvertToOffsetBasedLoD(new_lod);
             PADDLE_ENFORCE(
                 CheckLoD(new_offset_lod, -1),
                 "the provided recursive_sequence_lengths info is invalid");
             new (&instance) LoDTensor(new_offset_lod);
           })
Y
Yu Yang 已提交
235
      .def("__init__", [](LoDTensor &instance) { new (&instance) LoDTensor(); })
G
gongweibao 已提交
236 237 238 239 240
      // We implement offset based LOD in C++ while we use length based with
      // Python API. So we changed set_lod to set_recursive_sequence_lengths to
      // avoid misuse.
      // The discussion is here:
      // https://github.com/PaddlePaddle/Paddle/issues/10855
D
dangqingqing 已提交
241
      .def("set_lod",
242
           [](LoDTensor &self, const std::vector<std::vector<size_t>> &lod) {
243
             // the input lod is offset-based level-of-detail info
Y
Yu Yang 已提交
244
             LoD new_lod;
245 246
             new_lod.reserve(lod.size());
             std::copy(lod.begin(), lod.end(), std::back_inserter(new_lod));
247 248
             PADDLE_ENFORCE(CheckLoD(new_lod, vectorize(self.dims()).front()),
                            "the provided lod info is invalid");
249
             self.set_lod(new_lod);
D
dangqingqing 已提交
250
           })
251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275
      .def("set_recursive_sequence_lengths",
           [](LoDTensor &self, const std::vector<std::vector<size_t>>
                                   &recursive_sequence_lengths) {
             // the input recursive_sequence_lengths is length-based
             // level-of-detail info
             LoD new_lod;
             new_lod.reserve(recursive_sequence_lengths.size());
             std::copy(recursive_sequence_lengths.begin(),
                       recursive_sequence_lengths.end(),
                       std::back_inserter(new_lod));
             LoD new_offset_lod = ConvertToOffsetBasedLoD(new_lod);
             PADDLE_ENFORCE(
                 CheckLoD(new_offset_lod, vectorize(self.dims()).front()),
                 "the provided recursive_sequence_lengths info is invalid");
             self.set_lod(new_offset_lod);
           })
      .def("lod",
           [](LoDTensor &self) -> std::vector<std::vector<size_t>> {
             // output the offset-based lod info
             LoD lod = self.lod();
             std::vector<std::vector<size_t>> new_lod;
             new_lod.reserve(lod.size());
             std::copy(lod.begin(), lod.end(), std::back_inserter(new_lod));
             return new_lod;
           })
G
gongweibao 已提交
276
      // Set above comments of set_lod.
277 278 279 280 281 282 283 284 285 286 287 288 289
      .def("recursive_sequence_lengths",
           [](LoDTensor &self) -> std::vector<std::vector<size_t>> {
             // output the length-based lod info
             LoD lod = ConvertToLengthBasedLoD(self.lod());
             std::vector<std::vector<size_t>> new_lod;
             new_lod.reserve(lod.size());
             std::copy(lod.begin(), lod.end(), std::back_inserter(new_lod));
             return new_lod;
           })
      .def("has_valid_recursive_sequence_lengths", [](LoDTensor &self) -> bool {
        // Check that the lod info is valid and match the outermost
        // dimension of the LoDTensor data
        return CheckLoD(self.lod(), vectorize(self.dims()).front());
D
dangqingqing 已提交
290 291
      });

Q
qijun 已提交
292 293 294 295 296 297 298 299 300 301 302 303 304
  py::class_<SelectedRows>(m, "SelectedRows")
      .def("__init__",
           [](SelectedRows &instance) { new (&instance) SelectedRows(); })
      .def("__init__",
           [](SelectedRows &instance, const std::vector<int64_t> rows,
              const int64_t &height) {
             new (&instance) SelectedRows(rows, height);
           })
      .def("get_tensor",
           [](SelectedRows &self) { return self.mutable_value(); },
           py::return_value_policy::reference)
      .def("set_height", &SelectedRows::set_height)
      .def("height", &SelectedRows::height)
Q
qijun 已提交
305 306 307 308 309 310 311 312 313
      .def("set_rows",
           [](SelectedRows &self, std::vector<int64_t> rows) {
#ifndef PADDLE_WITH_CUDA
             self.set_rows(rows);
#else
        Vector<int64_t> new_rows(rows);
        self.set_rows(new_rows);
#endif
           })
314
      .def("sync_index", [](SelectedRows &instance) { instance.SyncIndex(); })
315
      .def("rows", [](SelectedRows &self) {
316 317 318 319 320
        auto rows = self.rows();
        std::vector<int64_t> new_rows;
        new_rows.reserve(rows.size());
        std::copy(rows.begin(), rows.end(), std::back_inserter(new_rows));
        return new_rows;
321
      });
Q
qijun 已提交
322

323
  py::class_<Variable>(m, "Variable", R"DOC(Variable Class.
324 325 326

All parameter, weight, gradient are variables in Paddle.
)DOC")
327
      .def("is_int", [](const Variable &var) { return var.IsType<int>(); })
328
      .def("set_int",
329 330
           [](Variable &var, int val) -> void { *var.GetMutable<int>() = val; })
      .def("get_int", [](const Variable &var) -> int { return var.Get<int>(); })
331 332 333 334 335 336 337
      .def("is_float", [](const Variable &var) { return var.IsType<float>(); })
      .def("set_float",
           [](Variable &var, float val) -> void {
             *var.GetMutable<float>() = val;
           })
      .def("get_float",
           [](const Variable &var) -> float { return var.Get<float>(); })
Y
Yu Yang 已提交
338
      .def("get_tensor",
339 340
           [](Variable &self) -> LoDTensor * {
             return self.GetMutable<LoDTensor>();
D
dangqingqing 已提交
341 342
           },
           py::return_value_policy::reference)
Y
Yu Yang 已提交
343 344 345
      .def("get_lod_rank_table",
           [](Variable &self) { return self.GetMutable<LoDRankTable>(); },
           py::return_value_policy::reference)
Q
qijun 已提交
346 347 348 349 350
      .def("get_selected_rows",
           [](Variable &self) -> SelectedRows * {
             return self.GetMutable<SelectedRows>();
           },
           py::return_value_policy::reference)
Y
Yu Yang 已提交
351 352 353
      .def("get_lod_tensor_array",
           [](Variable &self) { return self.GetMutable<LoDTensorArray>(); },
           py::return_value_policy::reference)
P
peizhilin 已提交
354 355
#if (defined(PADDLE_WITH_CUDA) && !defined(_WIN32))
	  .def("get_communicator",
D
Dong Zhihong 已提交
356 357 358 359
           [](Variable &self) -> platform::Communicator * {
             return self.GetMutable<platform::Communicator>();
           },
           py::return_value_policy::reference)
Y
Refine  
Yu Yang 已提交
360 361 362 363 364
      .def("get_reader",
           [](Variable &self) -> framework::ReaderHolder * {
             PADDLE_ENFORCE(self.IsType<framework::ReaderHolder>());
             return self.GetMutable<framework::ReaderHolder>();
           },
P
peizhilin 已提交
365 366 367
           py::return_value_policy::reference)
#endif
;
368

P
peizhilin 已提交
369
#if !defined(_WIN32)
Y
Refine  
Yu Yang 已提交
370
  py::class_<framework::ReaderHolder>(m, "Reader", "")
371
      .def("reset", &framework::ReaderHolder::ResetAll);
P
peizhilin 已提交
372
#endif
Y
Refine  
Yu Yang 已提交
373

S
sneaxiy 已提交
374 375 376 377
  using LoDTensorBlockingQueue =
      ::paddle::operators::reader::LoDTensorBlockingQueue;
  using LoDTensorBlockingQueueHolder =
      ::paddle::operators::reader::LoDTensorBlockingQueueHolder;
S
sneaxiy 已提交
378 379
  py::class_<LoDTensorBlockingQueue, std::shared_ptr<LoDTensorBlockingQueue>>(
      m, "LoDTensorBlockingQueue", "")
S
sneaxiy 已提交
380
      .def("push",
S
sneaxiy 已提交
381
           [](LoDTensorBlockingQueue &self,
S
sneaxiy 已提交
382
              const std::vector<framework::LoDTensor> &lod_tensor_vec) {
S
sneaxiy 已提交
383
             pybind11::gil_scoped_release release;
S
sneaxiy 已提交
384
             return self.Push(lod_tensor_vec);
S
sneaxiy 已提交
385
           })
S
sneaxiy 已提交
386 387 388 389
      .def("size", &LoDTensorBlockingQueue::Size)
      .def("capacity", &LoDTensorBlockingQueue::Cap)
      .def("close", &LoDTensorBlockingQueue::Close)
      .def("is_closed", &LoDTensorBlockingQueue::IsClosed);
S
sneaxiy 已提交
390

S
sneaxiy 已提交
391
  m.def("init_lod_tensor_blocking_queue",
S
sneaxiy 已提交
392
        [](Variable &var, size_t capacity,
S
sneaxiy 已提交
393
           const std::vector<std::vector<int64_t>> &shapes)
S
sneaxiy 已提交
394
            -> std::shared_ptr<LoDTensorBlockingQueue> {
S
sneaxiy 已提交
395 396 397 398 399 400
              std::vector<DDim> dims(shapes.size());
              std::transform(shapes.begin(), shapes.end(), dims.begin(),
                             [](const std::vector<int64_t> &shape) {
                               return make_ddim(shape);
                             });
              auto *holder = var.GetMutable<LoDTensorBlockingQueueHolder>();
401 402
              holder->InitOnce(capacity, dims,
                               FLAGS_reader_queue_speed_test_mode);
S
sneaxiy 已提交
403
              return holder->GetQueue();
S
sneaxiy 已提交
404
            },
S
sneaxiy 已提交
405
        py::return_value_policy::copy);
S
sneaxiy 已提交
406

407
  py::class_<Scope>(m, "Scope", "")
D
dongzhihong 已提交
408
      .def("var",
409
           [](Scope &self, const std::string &name) -> Variable * {
D
dongzhihong 已提交
410
             return self.Var(name);
Y
Yu Yang 已提交
411
           },
412
           py::return_value_policy::reference)
413
      .def("find_var", &Scope::FindVar, py::return_value_policy::reference)
Y
Yu Yang 已提交
414
      .def(py::init<>())
415
      .def("new_scope", [](Scope &self) -> Scope * { return &self.NewScope(); },
416
           py::return_value_policy::reference)
Y
Yu Yang 已提交
417
      .def("drop_kids", &Scope::DropKids);
418

Y
Yu Yang 已提交
419 420
  //! @note: Be careful! PyBind will return std::string as an unicode, not
  //! Python str. If you want a str object, you should cast them in Python.
Y
Yu Yang 已提交
421 422
  m.def("get_all_op_protos", []() -> std::vector<py::bytes> {
    std::vector<py::bytes> ret_values;
423 424 425 426 427 428 429 430 431 432
    for (auto &iter : OpInfoMap::Instance().map()) {
      auto &info = iter.second;
      if (info.HasOpProtoAndChecker()) {
        std::string str;
        PADDLE_ENFORCE(
            info.Proto().SerializeToString(&str),
            "Serialize OpProto Error. This could be a bug of Paddle.");
        ret_values.emplace_back(str);
      }
    }
Y
Yu Yang 已提交
433 434
    return ret_values;
  });
435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450
  m.def(
      "get_grad_op_desc", [](const OpDesc &op_desc,
                             const std::unordered_set<std::string> &no_grad_set,
                             const std::vector<BlockDesc *> &grad_sub_block) {
        std::unordered_map<std::string, std::string> grad_to_var;
        std::vector<std::unique_ptr<OpDesc>> grad_op_descs =
            framework::OpInfoMap::Instance()
                .Get(op_desc.Type())
                .GradOpMaker()(op_desc, no_grad_set, &grad_to_var,
                               grad_sub_block);
        std::vector<OpDesc *> grad_op_desc_ptrs(grad_op_descs.size());
        std::transform(grad_op_descs.begin(), grad_op_descs.end(),
                       grad_op_desc_ptrs.begin(),
                       [](std::unique_ptr<OpDesc> &p) { return p.release(); });
        return std::make_pair(grad_op_desc_ptrs, grad_to_var);
      });
Y
Yu Yang 已提交
451
  m.def("prune", [](const ProgramDesc &origin,
452
                    const std::vector<std::array<size_t, 2>> &targets) {
Y
Yu Yang 已提交
453
    ProgramDesc prog_with_targets(origin);
454
    for (const auto &t : targets) {
455
      prog_with_targets.MutableBlock(t[0])->Op(t[1])->SetIsTarget(true);
456
    }
457
    proto::ProgramDesc pruned_desc;
458
    Prune(*prog_with_targets.Proto(), &pruned_desc);
Y
Yu Yang 已提交
459
    return new ProgramDesc(pruned_desc);
460
  });
461 462 463 464
  m.def("empty_var_name",
        []() { return std::string(framework::kEmptyVarName); });
  m.def("grad_var_suffix",
        []() { return std::string(framework::kGradVarSuffix); });
465 466 467
  m.def_submodule(
       "var_names",
       "The module will return special predefined variable name in Paddle")
Y
Yi Wang 已提交
468 469
      .def("empty", []() { return kEmptyVarName; })
      .def("temp", []() { return kTempVarName; });
Q
qijun 已提交
470
  // clang-format off
Y
Yu Yang 已提交
471
  py::class_<paddle::platform::DeviceContext>(m, "DeviceContext")
Q
qijun 已提交
472 473
      .def_static("create",
                  [](paddle::platform::CPUPlace& place)
Q
qijun 已提交
474
                      -> paddle::platform::DeviceContext* {
Q
qijun 已提交
475 476 477
                    return new paddle::platform::CPUDeviceContext();
                  })
      .def_static("create",
D
dzhwinter 已提交
478
                  [](paddle::platform::CUDAPlace& place)
Q
qijun 已提交
479
                      -> paddle::platform::DeviceContext* {
480
#ifndef PADDLE_WITH_CUDA
D
dzhwinter 已提交
481
                    PADDLE_THROW("CUDAPlace is not supported in CPU device.");
Q
qijun 已提交
482
#else
Q
qijun 已提交
483
                    return new paddle::platform::CUDADeviceContext(place);
Q
qijun 已提交
484
#endif
C
chengduoZH 已提交
485 486 487 488 489 490 491 492 493 494 495
                  })
          .def_static("create",
                [](paddle::platform::CUDAPinnedPlace& place)
                        -> paddle::platform::DeviceContext* {
#ifndef PADDLE_WITH_CUDA
                  PADDLE_THROW(
                        "CUDAPinnedPlace is not supported in CPU device.");
#else
                  return new paddle::platform::CUDAPinnedDeviceContext(place);
#endif
                });;
D
Dong Zhihong 已提交
496
// clang-format on
P
peizhilin 已提交
497
#if (defined(PADDLE_WITH_CUDA) && !defined(_WIN32))
D
Dong Zhihong 已提交
498 499
  py::class_<platform::Communicator>(m, "Communicator").def(py::init<>());
#endif
D
dzhwinter 已提交
500
  py::class_<platform::CUDAPlace>(m, "CUDAPlace")
501
      .def(py::init<int>())
D
dzhwinter 已提交
502
      .def("__str__", string::to_string<const platform::CUDAPlace &>);
Q
qijun 已提交
503

504 505 506
  py::class_<paddle::platform::CPUPlace>(m, "CPUPlace")
      .def(py::init<>())
      .def("__str__", string::to_string<const platform::CPUPlace &>);
Y
Yu Yang 已提交
507

C
chengduoZH 已提交
508 509 510 511
  py::class_<paddle::platform::CUDAPinnedPlace>(m, "CUDAPinnedPlace")
      .def(py::init<>())
      .def("__str__", string::to_string<const platform::CUDAPinnedPlace &>);

Y
Yu Yang 已提交
512 513 514 515 516 517 518
  py::class_<platform::Place>(m, "Place")
      .def(py::init<>())
      .def("set_place",
           [](platform::Place &self, const platform::CPUPlace &cpu_place) {
             self = cpu_place;
           })
      .def("set_place",
D
dzhwinter 已提交
519
           [](platform::Place &self, const platform::CUDAPlace &gpu_place) {
Y
Yu Yang 已提交
520
             self = gpu_place;
C
chengduoZH 已提交
521 522
           })
      .def("set_place", [](platform::Place &self,
C
chengduoZH 已提交
523 524
                           const platform::CUDAPinnedPlace &cuda_pinned_place) {
        self = cuda_pinned_place;
C
chengduoZH 已提交
525
      });
Y
Yu Yang 已提交
526

Y
Yu Yang 已提交
527 528 529
  py::class_<OperatorBase>(m, "Operator")
      .def_static("create",
                  [](py::bytes protobin) {
530
                    proto::OpDesc desc;
Y
Yu Yang 已提交
531 532 533 534 535
                    PADDLE_ENFORCE(desc.ParsePartialFromString(protobin),
                                   "Cannot parse user input to OpDesc");
                    PADDLE_ENFORCE(desc.IsInitialized(),
                                   "User OpDesc is not initialized, reason %s",
                                   desc.InitializationErrorString());
536
                    return OpRegistry::CreateOp(desc);
Y
Yu Yang 已提交
537
                  })
538
      .def("run",
539
           [](OperatorBase &self, const Scope &scope,
D
dzhwinter 已提交
540 541 542
              const platform::CPUPlace &place) { self.Run(scope, place); })
      .def("run",
           [](OperatorBase &self, const Scope &scope,
D
dzhwinter 已提交
543
              const platform::CUDAPlace &place) { self.Run(scope, place); })
C
chengduoZH 已提交
544 545 546 547 548
      .def("run",
           [](OperatorBase &self, const Scope &scope,
              const platform::CUDAPinnedPlace &place) {
             self.Run(scope, place);
           })
Y
Yu Yang 已提交
549 550 551 552 553 554 555
      .def("type",
           [](const OperatorBase &op) -> std::string { return op.Type(); })
      .def("outputs",
           [](const OperatorBase &op)
               -> std::map<std::string, std::vector<std::string>> {
                 return op.Outputs();
               })
Q
qijun 已提交
556 557
      .def("output_vars",
           [](const OperatorBase &op) { return op.OutputVars(true); })
Y
Yu Yang 已提交
558
      .def("inputs", [](const OperatorBase &op) { return op.Inputs(); })
Q
qijun 已提交
559
      .def("input_vars", [](const OperatorBase &op) { return op.InputVars(); })
Y
Yu Yang 已提交
560 561 562 563
      .def("__str__", &OperatorBase::DebugString)
      .def("no_intermediate_outputs",
           [](const OperatorBase &op) { return op.OutputVars(false); })
      .def("support_gpu", &OperatorBase::SupportGPU);
Y
Yu Yang 已提交
564

F
fengjiayi 已提交
565
  py::class_<framework::Executor>(m, "Executor")
D
dzhwinter 已提交
566
      .def(py::init<const platform::Place &>())
Y
Yancey1989 已提交
567
      .def("close", &Executor::Close)
S
sneaxiy 已提交
568 569 570 571 572
      .def("run", [](Executor &self, const ProgramDesc &prog, Scope *scope,
                     int block_id, bool create_local_scope, bool create_vars) {
        pybind11::gil_scoped_release release;
        self.Run(prog, scope, block_id, create_local_scope, create_vars);
      });
S
sneaxiy 已提交
573

D
dzhwinter 已提交
574
  m.def("init_gflags", framework::InitGflags);
Y
Yang Yu 已提交
575
  m.def("init_glog", framework::InitGLOG);
X
Xin Pan 已提交
576 577
  m.def("init_devices",
        [](bool init_p2p) { framework::InitDevices(init_p2p); });
578

579
  m.def("is_compiled_with_cuda", IsCompiledWithCUDA);
Y
update  
Yancey1989 已提交
580
  m.def("is_compiled_with_dist", IsCompiledWithDIST);
581 582 583 584 585 586
#ifdef PADDLE_WITH_CUDA
  m.def("is_float16_supported", [](const platform::CUDAPlace &place) -> bool {
    // Only GPUs with Compute Capability >= 53 support float16
    return platform::GetCUDAComputeCapability(place.device) >= 53;
  });
#endif
587

588
  m.def("set_feed_variable", framework::SetFeedVariable);
Q
qijun 已提交
589
  m.def("get_fetch_variable", framework::GetFetchVariable);
Q
qijun 已提交
590

X
Xin Pan 已提交
591 592
  m.def("_is_program_version_supported", IsProgramVersionSupported);

593 594 595 596 597
  BindProgramDesc(&m);
  BindBlockDesc(&m);
  BindVarDsec(&m);
  BindOpDesc(&m);
  BindConstValue(&m);
Y
Yu Yang 已提交
598

Y
Yu Yang 已提交
599 600 601 602 603 604 605 606 607
  py::class_<framework::LoDRankTable>(m, "LodRankTable")
      .def("items", [](framework::LoDRankTable &table) {
        std::vector<std::pair<size_t, size_t>> res;
        for (auto &item : table.items()) {
          res.push_back({item.index, item.length});
        }
        return res;
      });

Y
Yu Yang 已提交
608
  py::class_<LoDTensorArray>(m, "LoDTensorArray")
S
sneaxiy 已提交
609 610
      .def("__init__",
           [](LoDTensorArray &instance) { new (&instance) LoDTensorArray(); })
Y
Yu Yang 已提交
611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626
      .def("__getitem__",
           [](LoDTensorArray &self, size_t i) { return &self.at(i); },
           py::return_value_policy::reference)
      .def("__len__", [](LoDTensorArray &self) { return self.size(); })
      .def("__setitem__",
           [](LoDTensorArray &self, size_t i, const LoDTensor &t) {
             PADDLE_ENFORCE_LT(i, self.size());
             self[i].ShareDataWith(t);
             self[i].set_lod(t.lod());
           })
      .def("append", [](LoDTensorArray &self, const LoDTensor &t) {
        self.emplace_back();
        self.back().ShareDataWith(t);
        self.back().set_lod(t.lod());
      });

D
dzhwinter 已提交
627 628 629
  m.def("IsInplace",
        [](std::string op) -> bool { return operators::IsInplace(op); });

Y
Yu Yang 已提交
630
  m.def("op_support_gpu", OpSupportGPU);
D
Dong Zhihong 已提交
631
#ifdef PADDLE_WITH_CUDA
D
Dong Zhihong 已提交
632
  m.def("get_cuda_device_count", platform::GetCUDADeviceCount);
D
dangqingqing 已提交
633

P
peizhilin 已提交
634
#ifndef _WIN32
D
dangqingqing 已提交
635 636 637
  m.def("nvprof_init", platform::CudaProfilerInit);
  m.def("nvprof_start", platform::CudaProfilerStart);
  m.def("nvprof_stop", platform::CudaProfilerStop);
D
Dong Zhihong 已提交
638
#endif
P
peizhilin 已提交
639
#endif
Y
Yu Yang 已提交
640

P
peizhilin 已提交
641
#ifndef _WIN32
642 643 644 645
  py::enum_<platform::ProfilerState>(m, "ProfilerState", py::arithmetic())
      .value("kDisabled", platform::ProfilerState::kDisabled)
      .value("kCPU", platform::ProfilerState::kCPU)
      .value("kCUDA", platform::ProfilerState::kCUDA)
646
      .value("kAll", platform::ProfilerState::kAll)
647 648 649 650 651 652 653 654 655 656 657 658 659
      .export_values();

  py::enum_<platform::EventSortingKey>(m, "EventSortingKey", py::arithmetic())
      .value("kDefault", platform::EventSortingKey::kDefault)
      .value("kCalls", platform::EventSortingKey::kCalls)
      .value("kTotal", platform::EventSortingKey::kTotal)
      .value("kMin", platform::EventSortingKey::kMin)
      .value("kMax", platform::EventSortingKey::kMax)
      .value("kAve", platform::EventSortingKey::kAve)
      .export_values();

  m.def("enable_profiler", platform::EnableProfiler);
  m.def("disable_profiler", platform::DisableProfiler);
X
Xin Pan 已提交
660
  m.def("is_profiler_enabled", platform::IsProfileEnabled);
661
  m.def("reset_profiler", platform::ResetProfiler);
P
peizhilin 已提交
662
#endif
Y
Yu Yang 已提交
663

664 665
  py::class_<ir::Pass, std::shared_ptr<ir::Pass>> pass(m, "Pass");
  pass.def(py::init())
666 667 668 669 670 671 672
      .def(
          "set_str",
          [](ir::Pass &self, const std::string &name, const std::string &attr) {
            self.Set<std::string>(name, new std::string(attr));
          })
      .def("set_int", [](ir::Pass &self, const std::string &name, int val) {
        self.Set<const int>(name, new int(val));
673 674
      });

X
fix  
Xin Pan 已提交
675 676
  py::class_<ir::PassBuilder, std::shared_ptr<ir::PassBuilder>> pb(
      m, "PassBuilder");
677 678 679 680 681 682 683 684 685 686 687 688 689 690
  pb.def(py::init())
      .def("append_pass",
           [](ir::PassBuilder &self,
              const std::string &pass_type) -> std::shared_ptr<ir::Pass> {
             return self.AppendPass(pass_type);
           })
      .def("all_passes", [](ir::PassBuilder &self) { return self.AllPasses(); })
      .def("insert_pass",
           [](ir::PassBuilder &self, size_t idx, const std::string &pass_type) {
             return self.InsertPass(idx, pass_type);
           })
      .def("remove_pass",
           [](ir::PassBuilder &self, size_t idx) { self.RemovePass(idx); });

P
peizhilin 已提交
691
#ifndef _WIN32
Y
yuyang18 已提交
692
  // -- python binds for parallel executor.
Y
yuyang18 已提交
693
  py::class_<ParallelExecutor> pe(m, "ParallelExecutor");
C
chengduo 已提交
694 695 696 697
  py::class_<ExecutionStrategy> exec_strategy(pe, "ExecutionStrategy", R"DOC(
    ExecutionStrategy allows the user to more preciously control how to run
    the program in ParallelExecutor by setting the property.

C
chengduo 已提交
698 699 700 701 702 703 704 705 706 707 708
    Examples:
        .. code-block:: python

          exec_strategy = fluid.ExecutionStrategy()
          exec_strategy.num_threads = 4

          train_exe = fluid.ParallelExecutor(use_cuda=True,
                                             loss_name=loss.name,
                                             exec_strategy=exec_strategy)

          train_loss, = train_exe.run([loss.name], feed=feed_dict)
C
chengduo 已提交
709 710 711

        )DOC");

Y
yuyang18 已提交
712
  exec_strategy.def(py::init())
Y
yuyang18 已提交
713 714 715 716 717
      .def_property(
          "num_threads",
          [](const ExecutionStrategy &self) { return self.num_threads_; },
          [](ExecutionStrategy &self, size_t num_threads) {
            self.num_threads_ = num_threads;
C
chengduo 已提交
718 719 720 721 722 723 724 725 726 727
          },
          R"DOC(The type is INT, num_threads represents the size of thread pool that
            used to run the operators of the current program in ParallelExecutor.
            If :math:`num\_threads=1`, all the operators will execute one by one,
            but the order maybe difference between iterations.
            If it is not set, it will be set in ParallelExecutor according to the
            device type and device count, for GPU, :math:`num\_threads=device\_count*4`, for CPU,
            :math:`num\_threads=CPU\_NUM*4`, the explanation of:math:`CPU\_NUM` is in ParallelExecutor.
            if it is not set, ParallelExecutor will get the cpu count by calling
            `multiprocessing.cpu_count()`. Default 0.)DOC")
Y
yuyang18 已提交
728
      .def_property(
729 730 731 732
          "use_cuda",
          [](const ExecutionStrategy &self) { return self.use_cuda_; },
          [](ExecutionStrategy &self, bool use_cuda) {
            self.use_cuda_ = use_cuda;
C
chengduo 已提交
733 734 735 736
          })  // FIXME(chengduo): Doesn't add doc for 'use_cuda', use_cuda may
      // make user confuse, because ParallelExecutor has a parameter named
      // 'use_cuda' too, in current implementation, ParallelExecutor's
      // 'use_cuda' will rewrite ExecutionStrategy's 'use_cuda'.
Y
yuyang18 已提交
737 738 739 740 741
      .def_property(
          "allow_op_delay",
          [](const ExecutionStrategy &self) { return self.allow_op_delay_; },
          [](ExecutionStrategy &self, bool allow_op_delay) {
            self.allow_op_delay_ = allow_op_delay;
C
chengduo 已提交
742 743 744 745
          },
          R"DOC(The type is BOOL, allow_op_delay represents whether to delay the
                communication operators to run, it may make the execution faster.
                Note that in some models, allow_op_delay may cause program hang. Default False.)DOC")
Y
yuyang18 已提交
746 747 748 749 750 751 752
      .def_property(
          "num_iteration_per_drop_scope",
          [](const ExecutionStrategy &self) {
            return self.num_iteration_per_drop_scope_;
          },
          [](ExecutionStrategy &self, size_t num_iteration_per_drop_scope) {
            self.num_iteration_per_drop_scope_ = num_iteration_per_drop_scope;
C
chengduo 已提交
753 754 755 756 757 758 759 760 761 762 763
          },
          R"DOC(The type is INT, num_iteration_per_drop_scope indicates how
                many iterations to clean up the temp variables which
                is generated during execution. It may make the execution faster,
                because the temp variable's shape maybe the same between two iterations. Default 100.

                NOTES:
                    1. If you fetch data when calling the 'run', the ParallelExecutor
                       will clean up the temp variables at the end of the current iteration.
                    2. In some NLP model, it may cause the GPU memory is insufficient,
                       in this case, you should reduce `num_iteration_per_drop_scope`.
764 765 766 767 768 769
              )DOC")
      .def_property("_dry_run",
                    [](const ExecutionStrategy &self) { return self.dry_run_; },
                    [](ExecutionStrategy &self, bool dry_run) {
                      self.dry_run_ = dry_run;
                    });
C
chengduo 已提交
770

Y
yuyang18 已提交
771
  exec_strategy.def_property(
Y
yuyang18 已提交
772 773 774 775 776 777 778
      "use_experimental_executor",
      [](const ExecutionStrategy &self) {
        return self.type_ == ExecutionStrategy::kExperimental;
      },
      [](ExecutionStrategy &self, bool experimental) {
        self.type_ = experimental ? ExecutionStrategy::kExperimental
                                  : ExecutionStrategy::kDefault;
Y
yuyang18 已提交
779 780
      });

C
chengduo 已提交
781 782 783 784
  py::class_<BuildStrategy> build_strategy(pe, "BuildStrategy", R"DOC(
    BuildStrategy allows the user to more preciously control how to
    build the SSA Graph in ParallelExecutor by setting the property.

C
chengduo 已提交
785 786 787 788 789 790 791 792 793 794 795
    Examples:
        .. code-block:: python

          build_strategy = fluid.BuildStrategy()
          build_strategy.reduce_strategy = fluid.BuildStrategy.ReduceStrategy.Reduce

          train_exe = fluid.ParallelExecutor(use_cuda=True,
                                             loss_name=loss.name,
                                             build_strategy=build_strategy)

          train_loss, = train_exe.run([loss.name], feed=feed_dict)
C
chengduo 已提交
796
)DOC");
Y
yuyang18 已提交
797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813

  py::enum_<BuildStrategy::ReduceStrategy>(build_strategy, "ReduceStrategy")
      .value("Reduce", BuildStrategy::ReduceStrategy::kReduce)
      .value("AllReduce", BuildStrategy::ReduceStrategy::kAllReduce);
  py::enum_<BuildStrategy::GradientScaleStrategy>(build_strategy,
                                                  "GradientScaleStrategy")
      .value("CoeffNumDevice",
             BuildStrategy::GradientScaleStrategy::kCoeffNumDevice)
      .value("One", BuildStrategy::GradientScaleStrategy::kOne)
      .value("Customized", BuildStrategy::GradientScaleStrategy::kCustomized);

  build_strategy.def(py::init())
      .def_property(
          "reduce_strategy",
          [](const BuildStrategy &self) { return self.reduce_; },
          [](BuildStrategy &self, BuildStrategy::ReduceStrategy strategy) {
            self.reduce_ = strategy;
C
chengduo 已提交
814 815 816 817 818 819 820
          },
          R"DOC(The type is STR, there are two reduce strategies in ParallelExecutor,
                  'AllReduce' and 'Reduce'. If you want that all the parameters'
                  optimization are done on all devices independently, you should choose 'AllReduce';
                  if you choose 'Reduce', all the parameters' optimization will be evenly distributed
                  to different devices, and then broadcast the optimized parameter to other devices.
                  In some models, `Reduce` is faster. Default 'AllReduce'. )DOC")
Y
yuyang18 已提交
821 822 823 824 825 826
      .def_property(
          "gradient_scale_strategy",
          [](const BuildStrategy &self) { return self.gradient_scale_; },
          [](BuildStrategy &self,
             BuildStrategy::GradientScaleStrategy strategy) {
            self.gradient_scale_ = strategy;
C
chengduo 已提交
827 828 829 830 831 832
          },
          R"DOC(The type is STR, there are three ways of defining :math:`loss@grad` in
                   ParallelExecutor, 'CoeffNumDevice', 'One' and 'Customized'. By default,
                   ParallelExecutor sets the :math:`loss@grad` according to the number of devices.
                   If you want to customize :math:`loss@grad`, you can choose 'Customized'.
                   Default 'CoeffNumDevice'.)DOC")
Y
yuyang18 已提交
833 834 835 836 837
      .def_property(
          "debug_graphviz_path",
          [](const BuildStrategy &self) { return self.debug_graphviz_path_; },
          [](BuildStrategy &self, const std::string &path) {
            self.debug_graphviz_path_ = path;
C
chengduo 已提交
838 839 840 841
          },
          R"DOC(The type is STR, debug_graphviz_path indicate the path that
                    writing the SSA Graph to file in the form of graphviz, you.
                    It is useful for debugging. Default "")DOC")
F
fengjiayi 已提交
842 843 844
      .def_property(
          "enable_data_balance",
          [](const BuildStrategy &self) { return self.enable_data_balance_; },
C
chengduo 已提交
845 846 847
          [](BuildStrategy &self, bool b) {
            self.enable_data_balance_ = b;
          })  // FIXME(chengudo): enable_data_balance seems not important
S
sneaxiy 已提交
848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865
      .def_property(
          "enable_sequential_execution",
          [](const BuildStrategy &self) {
            return self.enable_sequential_execution_;
          },
          [](BuildStrategy &self, bool b) {
            self.enable_sequential_execution_ = b;
          },
          R"DOC(The type is BOOL. If set True, the execution order of ops would be the same as what is in the program. Default False.)DOC")
      .def_property(
          "remove_unnecessary_lock",
          [](const BuildStrategy &self) {
            return self.remove_unnecessary_lock_;
          },
          [](BuildStrategy &self, bool b) {
            self.remove_unnecessary_lock_ = b;
          },
          R"DOC(The type is BOOL. If set True, some locks in GPU ops would be released and ParallelExecutor would run faster. Default False.)DOC")
C
chengduo 已提交
866 867 868 869 870 871 872 873 874 875 876
      .def_property(
          "fuse_elewise_add_act_ops",
          [](const BuildStrategy &self) {
            return self.fuse_elewise_add_act_ops_;
          },
          [](BuildStrategy &self, bool b) {
            self.fuse_elewise_add_act_ops_ = b;
          },
          R"DOC(The type is BOOL, fuse_elewise_add_act_ops indicate whether
                     to fuse elementwise_add_op and activation_op,
                     it may make the execution faster. Default False)DOC")
877
      .def("_create_passes_from_strategy",
X
fix  
Xin Pan 已提交
878 879 880
           [](BuildStrategy &self) -> std::shared_ptr<ir::PassBuilder> {
             return self.CreatePassesFromStrategy();
           });
Y
yuyang18 已提交
881 882 883 884

  pe.def(py::init<const std::vector<platform::Place> &,
                  const std::unordered_set<std::string> &,
                  const std::unordered_set<std::string> &, const ProgramDesc &,
Y
yuyang18 已提交
885
                  const std::string &, Scope *, std::vector<Scope *> &,
886 887
                  const ExecutionStrategy &, const BuildStrategy &, size_t,
                  size_t>())
Y
Yu Yang 已提交
888 889 890 891
      // NOTE: even we return a vec<Scope*>* to Python use reference policy.
      // We still cannot get local_scope from this vector, since the element
      // of vec<Scope*> will be freed by Python GC. We can only return Scope*
      // one by one and mark them as reference.
892 893 894 895 896
      .def("local_scopes",
           [](ParallelExecutor &self) -> std::vector<Scope *> * {
             return &self.GetLocalScopes();
           },
           py::return_value_policy::reference)
Y
Yu Yang 已提交
897 898 899 900
      .def("feed_tensors_into_local_scopes",
           &ParallelExecutor::FeedTensorsIntoLocalScopes)
      .def("feed_and_split_tensor_into_local_scopes",
           &ParallelExecutor::FeedAndSplitTensorIntoLocalScopes)
S
sneaxiy 已提交
901 902 903 904 905 906
      .def("run", [](ParallelExecutor &self,
                     const std::vector<std::string> &fetch_tensors,
                     const std::string &fetched_var_name) {
        pybind11::gil_scoped_release release;
        self.Run(fetch_tensors, fetched_var_name);
      });
Y
Yu Yang 已提交
907

908
  BindRecordIOWriter(&m);
P
peizhilin 已提交
909
#endif
910
  return m.ptr();
L
Luo Tao 已提交
911
}
912
}  // namespace pybind
913
}  // namespace paddle